首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed harvesting ants can have important effects on the composition and structure of plant communities. We investigated two effects of Messor andrei, the black seed-harvesting ant, on a serpentine grassland plant community in northern California. First, to determine if selective seed predation by ants affects plant community composition, we excluded harvester ants from 1-mediameter circular plots of grassland. Abundances of all species on these plots and on control plots were measured before and after exclosure. Second, to determine if M. andrei nest mounds affect plant community composition, we compared plant species abundances on and off nest mounds. M. andrei deposit large amounts of organic matter on their nest mounds over a foraging season, so mounds may alter the edaphic environment. The exclusion of seed-harvesting activity did not cause changes in the plant community. Nest mounds had a strong effect on plant communities: there were many more grasses and fewer forbs on ant mounds, although at least one forb, Lepidium nitidum, produced twice as many seeds when it grew on nest mounds. We found that nest mounds formed islands of higher-temperature soil in the serpentine grassland. Received: 31 March 1997 / Accepted: 6 May 1997  相似文献   

2.
The mound building ant Formica exsecta Nyl. is widely distributed in grassland ecosystems of the Central European Alps. We studied the impact of these ants on seed bank and vegetation patterns in a 11 ha subalpine grassland, where we counted over 700 active ant mounds. The mounds showed a distinct spatial distribution with most of them being located in tall‐grass, which was rarely visited by ungulates (red deer; Cervus elaphus L.). Heavily grazed short‐grass, in contrast, seemed to be completely avoided by ants as only few mounds were found in this vegetation type. The species composition of the ant mound and grassland seed banks was quite similar, i.e. from 15 common plant species 12 were found in both seed bank types. We found the same proportions of myrmecochorous seeds in ant mound and grassland soil samples. In contrast, the number of seeds was 15 times higher in mound compared with the grassland soil samples. Also, the vegetation growing on ant mounds significantly differed from the vegetation outside the mounds: graminoids dominated on ant mounds, herbaceous and myrmecochorous species in the grassland vegetation. We found significant continuous changes in vegetation composition on gradients from the ant mound centre to 1 m away from the mound edge. Overall, F. exsecta was found to have a considerable impact on seed bank and vegetation patterns in the grassland ecosystem studied. These insects not only altered grassland characteristics in the close surrounding of their mounds, but also seem to affect the entire ecosystem including, for example, the spatial use of the grassland by red deer.  相似文献   

3.
Disturbances by fossorial mammals are extremely common in many ecosystems, including the California annual grassland. We compared the impact of juveniles of four common plant colonizers (Aegilops triuncialis, Cerastium glomeratum, Aphanes occidentalis and Lupinus bicolor) on the pools and fluxes of N in mounds created by pocket gophers (Thomomys bottae Mewa). The mechanisms and magnitude of biotic N retention differed among plant species. In mounds colonized by Cerastium, Aphanes and Lupinus, the microbial N pool was significantly larger than the plant N pool, as is typical in California grasslands in the early spring, whereas in mounds colonized by Aegilops, there was a more equal distribution of biotic N between plant and microbial pools. A 1-day 15N pulse field experiment demonstrated that plant species significantly differed in their effects on the distribution of isotopic N, with the N-fixing Lupinus leaving most (82%) 15N as inorganic N in soil, whereas more 15N was immobilized in plants or otherwise removed from the available soil pool in mounds colonized by other species. The impacts of early colonizers on N dynamics suggest that the identity of plant species that initially colonize gopher mounds may have important consequences on the dynamics of the overall grassland community.  相似文献   

4.
Seed-harvesting ants can influence the abundance and distribution of plant species through both the selective harvesting of seeds and the construction of nutrient-rich nest mounds, but the relative contributions of these two mechanisms have not been addressed by previous studies. Furthermore, the impact of ant seed harvesting in California serpentine grasslands remains unresolved because of divergent results from several previous experiments. This study investigates the influence of harvester ants on serpentine grassland plant species composition by examining two potential signatures of seed harvesting ants on plant community composition: species composition on versus off ant nest mounds, and species abundance as a function of distance from nest mounds. Of the 28 plant species identified in this study, 22 exhibited spatial patterns consistent with effects of seed harvesting, nest construction, or both. Although most species showed significant gradients in abundance with distance from a nest, there were no clear relationships between plant species distributions and previously reported harvester ant seed foraging patterns. Harvester ant nest mounds supported plant communities that were distinct from the surrounding serpentine grassland, with notably higher densities of legumes and invasive annual grasses. Comparison of our results with those of previous studies indicates that the patterns we observed are generally consistent over time, but affect more species and a larger fraction of the grassland than previously reported. Unaffected areas of the grassland seem likely to serve as important refuges for some plant species.  相似文献   

5.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

6.
Ants (L. niger and L. flavus) build conspicuous mounds that are covered with vegetation. The aim of this study was to investigate whether the vegetation on ant mounds in semi-natural grasslands differed from that around the mounds. Another aim was to investigate whether the changes in the vegetation on ant mounds were influenced by grazing management or by habitat characteristics, semi-dry versus moist. Here, the total number of plant species and total plant cover were lower on ant mounds than in patches off-mound. The plant cover of perennials that form rosettes was twice as high on mounds inhabited by L. niger than on those inhabited by L. flavus. Only a few plant species were restricted to either ant mounds or adjacent field and the effects of ants on the plant diversity in semi-natural grasslands seemed to be low. Grazing management did not affect the differences in the vegetation on ant mounds and in equal-sized patches off-mound, whereas habitat characteristics affected ant-induced changes in vegetation cover of some plant species.  相似文献   

7.
Kovář  Pavel  Kovářová  Marcela  Dostál  Petr  Herben  Tomáš 《Plant Ecology》2001,156(2):215-227
Vegetation in grasslands with well-developed long-lastingant-hills in the Slovenské Rudohorie Mts., Slovakia, was studiedin relation to (i) position on the mound, (ii) ant speciesforming the mound, and (iii) history of the mound. Permanent plotrecordings of mound size and dominant ant species started fifteen years priorthe study began provided information on the history of individual mounds.The mound vegetation bears a striking similarity to vegetation insimilar habitats across a large part of Europe due to presence of species suchas Agrostis capillaris, Dianthusdeltoides, Polytrichum commune agg.,Thymus pulegioides, and Veronicaofficinalis. Out of the three major ant species-groups presentat the site (Lasius flavus, Tetramoriumcaespitum and Formica spp.), L.flavus had the most pronounced and the most lasting effect on themound vegetation. The dominance of the plant species listed above increased withthe time span over which the mound was inhabited by L.flavus. The effects of other species on vegetation composition,though discernible from short-term observation, disappeared over severalyears. The mounds proper did not differ from the undisturbed grassland in theproportion of myrmecochorous plants or plants with specific seed size ordormancy type. However, there was a highly significant concentration ofmyrmecochorous plants in the grassland patches immediately neighbouring themounds; this is likely to be due to seeds deposited there by the workers fromthe nest after the elaiosomes had been consumed. The mound vegetation wascomposed mainly of species with long stolons or rhizomes; however, there was nosignificant difference in formation type or length of stolons/rhizomesbetween mounds and the rest of the grassland or among mounds formed by differentant species.  相似文献   

8.
Harvester ant foraging and plant species distribution in annual grassland   总被引:7,自引:0,他引:7  
R. J. Hobbs 《Oecologia》1985,67(4):519-523
Summary The harvester antVeromessor andrei Mayr is a major seed predator on annual grassland growing on serpentine soil at Jasper Ridge, N. California. Ants forage intensively during morning and evening sessions in areas surrounding nests. Activity is at its most intense in early summer, coinciding with peak seed release for most annual plant species. Ants show strong preferences for seeds of non-dominant species, notablyMicroseris douglasii (DC.) Sch.-Bip., but preferences alter over the season in response to seed availability. Seeds of the dominant annual species,Lasthenia californica DC ex Lindley are not foraged until later in the summer when seeds of other species are less abundant.Seedling densities and species compositions on ant nests differ markedly from surrounding areas with species relative abundances being similar to those found on gopher mounds. An exclosure experiment in areas adjacent to nests indicated that ants significantly reduced the densities of species with preferred seeds. Ants may therefore significantly affect plant distribution and abundance within the serpentine grassland.  相似文献   

9.
Abstract. Our objective was to evaluate the effects of burrowing activities by banner-tail kangaroo rats (Dipodomys spectabilis Merriam) on plant community structure and species dominance for two patch types at the ecotone between shortgrass steppe and desert grassland in New Mexico, USA. 10 mounds produced by kangaroo rats were selected in patches dominated by Bouteloua gracilis (the dominant in shortgrass steppe communities) and 10 mounds were selected in patches dominated by B. eriopoda (the dominant in Chihuahuan desert grasslands). Plant cover and density by species were sampled from three locations associated with each mound: the mound proper, the edge of the mound in the transition area, and the off-mound vegetation. Similar cover of B. eriopoda for the edges of mounds in both patch types indicates the ability of this species to respond to animal disturbances regardless of the amount of cover in the surrounding undisturbed vegetation. By contrast, cover of B. gracilis was low for all mounds and mound edges in patches dominated by this species. Much higher cover of B. eriopoda on mound edges compared to the undisturbed vegetation in B. gracilis-dominated patches indicates that kangaroo rats have important positive effects on this species. Lower cover of perennial grasses and higher cover of forbs, shrubs, and succulents on the edges of mounds in B. eriopoda-dominated patches compared to patches dominated by B. gracilis indicate the importance of surrounding vegetation to plant responses on disturbed areas. Our results show that kangaroo rats have important effects on both species dominance and composition for different patch types, and may provide a mechanism for small-scale dominance patterns at an ecotone; thus providing further support for their role as keystone species in desert grasslands.  相似文献   

10.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

11.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

12.
高寒草甸放牧利用下高原鼢鼠(Eospalax baileyi)等危害的发生是草地管理的关键难题,分析放牧管理模式对鼢鼠鼠丘植被群落演替的影响能为草地管理提供重要依据。研究选择划区轮牧(RG)、生长季休牧(GSG)、连续放牧(CG)和禁牧(PG)4种放牧管理模式,以及各模式下不同年限鼠丘(一年(ZM1)、两年(ZM2)、三年(ZM3)和多年鼠丘(ZMM))与对照(CM)草地。分析不同放牧管理模式对鼠丘植被群落特征和生物量等的影响,结果发现:PG和GSG下所有年限鼠丘的植被高度、地上生物量均高于RG和CG;RG和GSG下ZM1和ZM2物种Shannon-wiener指数均高于对照样地物种Shannon-wiener指数。主成分分析表明:RG下地上生物量和物种丰富度指数是影响鼠丘植被群落演替的重要因子,PG下地上生物量、盖度、Shannon-wiener指数和均匀度指数是鼠丘植被群落演替的重要因子,CG下物种丰富度和重要值是影响鼠丘植被群落演替的重要指标,GSG下Shannon-wiener指数、盖度和高度是影响鼠丘植被群落演替的重要指标。可见,不同放牧制度对鼠丘植被群落演替的影响不同,禁牧和生长季休牧管理模式能够较好地恢复鼠丘植被群落演替。  相似文献   

13.
Questions: In a system of five annual plant species restricted to nest‐mounds of the ant Lasiusflavus in a perennial grassland: 1. Are the population dynamics influenced by ant disturbance? 2. Is the survival of the annuals at the scale of the whole grassland possible under the observed conditions of disturbance dynamics? 3. Which phases in the annuals’ life cycle and patch types contribute most to population growth? Location: Borec hill, northern Czechia, 50°31’ N, 13°59’ E, 446 m a.s.l. Methods: Local population dynamics of the annuals were analysed separately for five patch types that differed in the proportion of bare soil. Vitality rates were assessed directly in the field, but also in a garden experiment, during 2000–2001 and 2001–2002. Population dynamics at the scale of the whole grassland was analysed with a megamatrix approach, combining patch dynamics of the nest‐mounds with patch‐specific population dynamics. Contributions of different phases and patch types to growth rate were estimated by elasticity analysis. Results: Nest‐mounds differed in the percentage of bare soil. Increasing moss cover significantly reduced germination and seed production of all studied annuals and decreased their population growth rates (λ). Although successional processes dominated over ant disturbance, populations of all species could survive well (λ? 1) in the grassland according to the 2000–2001 megamatrix dynamics. Based on the dynamics from the following period, two species would not survive in a long‐term perspective due to random environmental variation. Whereas the A‐A transition (adult plants originating from adults of the previous year) had the highest elasticity under open conditions and ‘good period’ demography, the importance of persistent seeds increased under reverse conditions. This, however, differed among species. Conclusions: Ant‐disturbance was shown to be critical for the population survival of five annual species in the studied grassland. The fate of the annual populations in the grassland system also depends on random environmental variation, which may override the effect of ant activity.  相似文献   

14.
A key task for native grassland managers is to assess when biomass reduction is necessary to maintain plant and animal diversity. This requires managers to monitor grassland structure. Parks Victoria and La Trobe University developed a method for rapid assessment of grassland structure using golf balls. Baker‐Gabb et al. (Ecological Management & Restoration, 17, 2016, p235) provide an example of where the method has been used to manage grassland structure to favour an endangered bird, the Plains‐wanderer (Pedionomus torquatus). In this study, we provide further critical analysis of the method using three data sets collected across different parts of Victoria that relate golf ball scores to various habitat attributes. We demonstrate how the golf ball score provides a good surrogate for key aspects of grassland structure. We show that the method does not provide a reliable surrogate for above‐ground biomass or vegetation cover, although we discuss how biomass and cover are not particularly good indicators of grassland structure. We argue that elements of grassland structure may be better correlated with desired conservation outcomes (e.g. plant species diversity or the presence of a particular species) than biomass or cover alone. We discuss examples of how the golf ball method has been used, and how it can be improved. The method will be particularly useful where a link can be demonstrated between golf ball scores and desired conservation outcomes, such as in the case of the Plains‐wanderer.  相似文献   

15.
Disturbances are important natural factors affecting biological diversity, community composition, and ecosystem structure. The European ground squirrel is a semi-fossorial organism, and through disturbances caused by burrowing activities, it can play an important role as an ecosystem engineer of grasslands in central and south-eastern Europe. The aim of this study was to assess the response of grassland vegetation to disturbances by the European ground squirrel. We conducted a pairwise survey within a 1-ha study site with homogenous environmental conditions. We compared the vegetation characteristics of 2?×?2-m plots placed on 30 mounds, with paired control plots situated at a distance of 10 m from each mound. The results showed that plots disturbed by the European ground squirrel achieved a higher species richness and diversity and a distinct species composition compared to the undisturbed control plots. Vertical structure of vegetation was also significantly different with a higher proportion of the high and medium vegetation layers on the mounds. Shifts in the composition of plant life forms and life strategies were reflected by the reduction of graminoids and plant competitors, and support of forbs on the mounds. These findings suggest that the European ground squirrel helps to maintain heterogeneity in grassland ecosystems and creates patches of higher diversity and higher structural complexity in the relatively homogenous grassland vegetation of the Western Carpathians.  相似文献   

16.
We investigated successional trends on windthrow mounds in two old-growth Tsuga heterophylla-Picea sitchensis forests in northern southeast Alaska to determine the influence of windthrow disturbance on the maintenance of plant diversity. We were particularly interested in assessing the value of mosses in detecting long-term effects of disturbance in temperate rainforests. Mosses established a dense carpet on windthrow mounds within the first few decades after the disturbance. No consistent changes were noted in total moss and vascular plant cover, moss biomass, or species diversity between young mounds (±50 yrs), intermediate mounds (±150 yrs) or old mounds (> 200 yrs), or between mounds and the undisturbed forest floor, despite consistent differences in soils development.Classification and ordination of the vegetation data did not show a consistent relationship between soil surface age or soil depth and overall species composition on the two sites. Young mounds were the most compositionally distinctive, primarily due to moss species. Pogonatum alpinum var. sylvaticum, P. contortum and Polytrichum formosum were generally confined to young mounds with unstable substrata, while Dicranum majus and Sphagnum girgensohnii were associated with old soil surfaces and deep organic soils. Vascular plant species with affinities for riparian or deep shade habitats (Tiarella trifoliata, Coptis asplenifolia and Dryopteris expansa) showed a general preference for the forest floor. Gymnocarpium dryopteris was the only vascular plant with a significant association with young mounds.Mosses comprised approximately 25% of understory plant biomass and as much as 50% of understory productivity. In cool temperate forests, the inclusion of mosses in vegetation analysis may provide valuable insights into the nature of vegetation patterns over subtle environmental gradients. The distinctiveness of the temperate rainforest type and the unique ecological effects of windthrow disturbance in this type are also suggested by this study.Abbreviations HR = Heintzleman Ridge (study site) - OP = Outer Point (study site)  相似文献   

17.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

18.
Qinfeng Guo 《Oecologia》1996,106(2):247-256
The effects of bannertail kangaroo rat (Dipodomys spectabilis) mounds and associated soil-surface disturbance on plant species composition and diversity in the Chihuahuan Desert were examined with multivariate analysis. Kangaroo rat mounds created disturbance gaps and contributed to local species diversity by creating microhabitats that supported unique plant communities. These microhabitats supported populations of species that were relatively rare in surrounding areas. The diversity observed at the whole habitat level resulted from (1) local spatial heterogeneity, because the mounds offered microenvironments with distinctive nutrient, water, and light conditions; and (2) local patterning of disturbance, because the digging and traffic of the kangaroo rats maintained high levels of soil disturbance at and near the mounds. At a finer scale, species diversity was highest in the area immediately adjacent to active and inactive mounds, and was lower on both the highly disturbed soil of the mounds and in the relatively undisturbed area between mounds. Lowest species diversity occurred on inactive mounds. Annual plant biomass was much greater on mounds than in inter-mound areas. The results support the predictions that intermediate levels of disturbance and small-scale environmental heterogeneity contribute to supporting high species diversity.  相似文献   

19.
Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of patch disturbances created by D. spectabilis mounds on ant assemblages in a Chihuahuan Desert grassland in southern New Mexico by using pitfall traps in a paired design (mound vs. matrix). Although the disturbances did not alter species richness or harbor unique ant communities relative to the matrix, they did alter species composition; the abundances of 6 of 26 species were affected. The disturbances might also act to disrupt spatial patterning of ants caused by other environmental gradients. In contrast to previous investigations of larger-scale disturbances, we detected no effects of the disturbances on ants at the functional-group level. Whether ant communities respond to disturbance at a functional-group or within-functional-group level may depend on the size and intensity of the disturbance. Useful functional-group schemes also may be scale-dependent, however, or species may respond idiosyncratically. Interactions between disturbance-generating mammals and ants may produce a nested spatial structure of patches. Received: 11 October 1999 / Accepted: 11 March 2000  相似文献   

20.
Nest-mounds of the harvester ant Messor capensis occur on and around nutrient-rich patches, along minor drainage lines in nutrient-rich soils, and on the plains, generally in nutrient-poor soils. Nest-site selection is related to the presence of suitable deep soils, the presence of stones and the distance from the nearest neighbouring nest. Two plant species, Galenia fruticosa and Pteronia pallens, were significantly associated with Messor capensis nest-mounds, both in numbers of mounds occupied and in numbers of individuals. A third species, Drosanthemum montaguense, was also more common in numbers of individuals, while a fourth species, Rhinephyllum macradenium was negatively associated with these mounds. The analysis of species guilds by soil type shows that significantly more species of nutrient-rich soils are present on M. capensis nest-mounds. Also, significantly more taller, woody species occurred on nest-mounds than in inter-mound spaces. Two species, Pteronia pallens and Osteospermum sinuatum, growing on ant nest-mounds had significantly longer inter-nodes than the same species growing off mounds. However, two other species, Pteronia cf. empetrifolia and Galenia fruticosa showed no difference in inter-node lengths between plants growing on and off mounds. Six of the nine species of plants sampled on ant nest-mounds had significantly higher seed production than plants of the same species growing in inter-mound spaces. The other three species showed a tendency towards more seeds per plant on ant nest-mounds. The proportions of live and dead plants on mounds differed between species. Only Ruschia spinosa showed a significant difference between the numbers of dead plants in the population on and off mounds, with more dead plants occurring on mounds. Significantly more seeds set on individuals of Pteronia pallens growing on ant nest-mounds than those growing off nest-mounds, but no such difference occurred in P. cf. empetrifolia. There was no significant difference in the proportion of seeds parasitized by the tephritid fly Desmella anceps for individuals of P. pallens and P. cf. empetrifolia growing on and off mounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号