首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为利用城市有限的土地资源,在密集的地铁邻近区域进行新建工程施工不可避免。以深圳市桂庙路改造工程为背景,考虑基坑开挖扰动导致抵抗下卧盾构隧道隆起的土体地基参数沿隧道纵向不均匀分布,将盾构隧道简化为Vlazov地基中的Timoshenko梁,对作用在下卧盾构隧道上的基坑开挖卸荷作用采用Mindlin解计算,建立基坑开挖引起既有下卧盾构隧道隆起变形量的理论计算模型,并与既有研究成果和现场实测结果进行对比验证;基于建立的模型对深圳市桂庙路新建基坑施工参数进行优化设计。研究结果表明:所建立的模型能够准确、有效地评估基坑开挖对下卧盾构隧道的影响;建议将原施工方案的3个台阶开挖高度分别调整为4,4和6 m,台阶步长调整为11 m。  相似文献   

2.
目的基于弹性理论,采用二阶段法,研究基坑开挖对下卧隧道竖向隆起的影响.方法首先基于Boussinesq解与土体e-lgp模型、Mindlin解与土体e-lgp模型,采用分层总和法计算出隧道轴线处由于基坑土体开挖引起的土体位移,然后将土体位移作为被动荷载,作用于被动状态的弹性地基梁模型得到隧道竖向位移,结合4个实例确定合理的计算深度.结果基坑开挖引起的坑底土体隆起位移可以用高斯曲线来拟合;基于Boussinesq解的基坑隆起位移,计算深度宜取隧道轴线以下,基坑开挖深度的0.89倍;基于Mindlin解的基坑隆起位移,计算深度宜取隧道轴线以下,基坑开挖深度的0.72倍.结论基于弹性理论,采用二阶段法计算基坑开挖引起的下卧隧道隆起变形是合理的,基于Mindlin解的计算结果更符合隧道隆起的规律.  相似文献   

3.
为探究基坑开挖和顶管施工共同作用下下卧隧道结构的响应规律,以西安兴善寺东街雨水管道工程为背景,采用数值模拟和实测数据分析相结合的方法对比分析采用明挖法和顶管法两种不同施工方式施工时下卧隧道变形规律,利用正交试验法研究基坑开挖和顶管施工共同作用时下卧隧道隆起量影响因素。结果表明:下卧隧道沿纵向5倍基坑开挖宽度内结构的隆起变形受基坑开挖影响较大,且基坑开挖卸荷使下卧隧道结构发生不均匀变形。左隧道拱顶最大隆起量为4.13 mm,拱腰最大收敛值约为0.55 mm,结构易发生扭转变形;右隧道拱顶最大隆起量约为3.19 mm,拱腰最大收敛值约为0.24 mm,结构易发生竖向拉伸变形。采用顶管法施工可以减少下卧隧道的变形量,实测数据表明顶管施工会使下卧隧道产生横向收敛,最大为1.7 mm,实际工程中应注意控制既有隧道结构的横向变形。基坑开挖和顶管施工共同作用时,各因素对左右隧道的影响程度不同,左隧道的隆起量主要受基坑开挖卸荷作用影响,右隧道的隆起量主要受顶管施工的顶推作用和开挖卸荷作用影响。同时应注意各因素之间不一定是相互独立的,需要考虑因素组合对下卧隧道隆起量的影响。  相似文献   

4.
引入可综合考虑盾构隧道管片环转动和错台2种变形效应的协同变形模型,采用Mindlin解求得基坑开挖引起下卧盾构隧道的附加荷载,结合最小势能原理建立盾构隧道纵向位移变分控制方程。推导出隧道的纵向位移、环间转角、环间错台量和剪切力的计算公式。根据3组典型工程实例进行计算分析。研究结果表明:采用综合考虑管片环错台和转动协同变形的模型时,计算结果与实测值更吻合,更能反映实际此类工程中盾构隧道的变形模式和变形规律;盾构隧道相邻管片环间错台量、环间转角以及相邻管片环间剪切力的最大值都发生在上方基坑开挖区域的边缘外侧;实际工程中,上方基坑开挖引起的隧道纵向变形主要是以错台变形为主,占变形量的70%~90%,以刚体转动变形为辅,占变形量的10%~30%。  相似文献   

5.
基坑开挖卸荷将改变地应力平衡状态,位于基坑正下方的地铁隧道将随基底一定深度范围内土层回弹而发生上浮变形。本文结合深圳地铁11号线正上方某采用竖井工法开挖的基坑工程为例,通过建立三维有限元模型分析下卧地铁隧道随竖井开挖过程的变形规律及竖井工法保护机制。结果表明:基坑开挖对下卧地铁隧道竖向卸荷作用显著,采用竖井工法能有效减缓隧道上浮趋势,减小最终上浮量;隧道纵向变形呈双峰形态,纵向变形曲率半径未超过规定值;隧道横截面随开挖过程而发生两侧拱腰压缩、拱顶与拱底之间拉伸的变形趋势,附加弯矩随开挖卸载率增大而逐渐减小,最大附加弯矩位于拱顶附近;竖井工法能减小基底土层的扰动程度,有效抑制基底土体以及隧道围土塑性区发展深度和面积,从而有效控制下卧地铁隧道的隆起量。  相似文献   

6.
为研究基坑开挖施工对既有近距离下卧隧道变形的影响,结合南宁某基坑工程,论述并验证既有隧道的加固保护措施,并通过基坑施工过程中对下卧隧道的全过程监测,分析基坑开挖施工对下卧隧道的影响.结果表明:开挖阶段管片发生明显的突变上浮,靠近基坑中部区域的隧道管片变形较大;左右线上浮变形初期受开挖顺序影响很大,最终表现为卸荷量大的一...  相似文献   

7.
基坑卸荷开挖引起围岩应力场的改变,必然对下卧运营隧道的安全性造成影响。以北京地铁8号线上方基坑卸荷开挖为背景,运用MIDAS/GTS软件、分别针对3种不同工况对施工全过程进行动态模拟。结果表明:基坑按分块、小面积开挖,底部土体注浆加固可以有效控制隧道隆起变形。隧道隆起变形近似呈正态分布,最大值发生在基坑正下方的隧道断面,从基坑正下方沿隧道纵向向左右各30m为开挖主影响区,左右各60m范围为开挖扰动区。  相似文献   

8.
以杭州某基坑工程实例为背景,采用MIDAS/GTS有限元软件建立了三维基坑模型,研究了基坑开挖对下卧盾构隧道变形的影响以及不同加固控制措施的效果.研究结果表明:基坑开挖会引起下方隧道和基坑封底的隆起变形,封底浇筑完成后隧道隆起达到最大值(4.88mm),与实测数据4.9mm相符;在加固控制措施由简单到严格的工况下,隧道和基坑封底的隆起值呈递减趋势,表明各工况下的加固控制措施均有一定效果,其中坑外加固和坑底堆载对降低隧道隆起效果明显,钢支撑和坑底加固对降低封底隆起效果明显.  相似文献   

9.
基坑开挖会对下卧管线产生不利影响,如何控制基坑开挖对下卧管线产生的不利影响是工程界的热点问题.以杭州市沿江大道管廊基坑上跨污水管段工程为背景,利用ABAQUS软件进行数值模拟,建立了三维有限元模型.在此基础上分析了管线周围土体注浆加固的作用,同时研究了改变管线与基坑的夹角引起管线竖向位移的变化规律.分析结果表明:上方基坑的开挖会使下卧管线呈现出"中间大、两边小"的"上凸型"变形模式,对下卧基坑管线周围进行合理的注浆加固,能有效减少管线的整体隆起变形;且下卧管线与基坑长边夹角越大,管线的最大隆起位移越小,当管线与基坑长边垂直时,管线的隆起变形最小.研究结果可为今后类似工程提供借鉴.  相似文献   

10.
文章以某城市地铁车站深基坑为研究对象,基于有限差分方法、流固耦合原理和有效应力原理,利用FLAC3D软件对深基坑进行三维流固耦合降水开挖数值模拟,结合监测数据,分析潜水地区深基坑降水和开挖引起的下卧隧道内力和变形变化机理,并且用一维高斯函数对下卧隧道变形曲线进行拟合,拟合效果较好.研究结果表明:在基坑范围内、外,下卧隧...  相似文献   

11.
上方基坑开挖由于应力释放及坑底回弹,不可避免导致既有隧道产生上浮变形,长距离共线时其影响更为显著.在考虑环间剪切错台变形的铁木辛柯简化模型基础上,结合Winkler地基模型,提出了一种上方基坑开挖下土-隧道相互作用解析模型.利用叠加原理将该模型应用于上方长距离基坑开挖引起的共线隧道变形实例分析.通过计算结果与实测数据对比验证了该模型的准确性.分析结果表明,上方主体结构施工后,隧道上浮变形明显回落,但局部差异沉降增加,导致隧道内力和环缝变形显著增加.隧道渗漏水位置并非位于隧道上浮变形最大处,而是位于接头张开量最大处与接头错台变形最大处之间.因此,实际工程中不应仅关注隧道总变形,同时应关注差异沉降引起的接缝张开及错台变形.虽然隧道变形中剪切变形占比约为21.41%,但其引起的接缝错台变形较为显著,其对接缝防水有重要影响,理论分析中不容忽视.  相似文献   

12.
密集城市区近接基坑工程易引发超大直径(>15 m)盾构隧道变形、结构开裂及渗漏水.当前超大直径盾构隧道建设处于起步阶段,基坑影响下隧道变形响应规律不明,合理的影响分区匮乏.本文采用有限元软件建立超大直径隧道旁侧基坑开挖的三维有限元模型,分析超大直径隧道的结构变形响应机制,并探讨隧道埋深、隧道-基坑间距、基坑开挖深度等因素影响规律.结果表明,基坑开挖引发地层朝向基坑的“鼓肚子”水平位移和“勺子”状竖向位移;与小直径隧道相比,超大直径盾构隧道表现出较小的纵向变形和较为显著的横向变形;隧道变形随隧道-旁侧基坑围护结构距离增大而减小、随埋深增大先增大后减小、随基坑开挖深度的增大而增大.通过基坑开挖深度归一化后,隧道最大变形与隧道-基坑间距可用指数函数高精度拟合.提出归一化后的影响分区图,为实际工程超大直径隧道结构保护提供重要的参考.  相似文献   

13.
开挖卸荷引起地铁隧道位移预测方法   总被引:16,自引:0,他引:16  
目前越来越多的基坑工程位于已建地铁隧道之上或两侧 .近距离基坑开挖土体卸荷势必引起隧道的位移变化 ,因此如何预测和控制隧道变形、确保隧道使用安全日趋重要 .为此研究了处于软土基坑之下的地铁隧道的位移变化规律 ,分析了基坑工程中时间、空间效应对隆起的影响规律 ,提出了时间、开挖宽度影响系数 ,推导出考虑基坑施工影响的隧道位移变形的实用计算方法  相似文献   

14.
通过对沈阳站东站房地下通道工程开挖过程的数值模拟,对基坑开挖过程中地面沉降、支护桩的变形、立柱的内力和下卧地铁区间的变形进行了计算分析.结果表明,托换板可以有效地限制支护桩的水平位移和基底土体的隆起,进而控制地表沉降的产生;基坑开挖过程中所引起的基底土体隆起会使立柱自身的轴力增大,影响内支撑结构体系的稳定;基坑开挖对其下卧地铁区间的水平、竖向位移有明显影响,区间以"水平向压缩、竖向拉伸"的椭圆形形式产生收敛变形.交叉建设的基坑工程对周围环境及建构筑物的影响不容忽略.  相似文献   

15.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

16.
基于上海地区某深基坑工程施工方案,建立了紧邻运营地铁隧道的基坑开挖变形影响的有限元数值模型,重点分析了基坑围护支撑的数量和位置、基坑土体加固、地铁隧道位置、隧道下卧层土体和地下连续墙刚度对基坑周边地层以及隧道变形的影响.结果表明:基坑围护支撑数目及位置的选择对周边地层和隧道变形产生影响较大;隧道的存在对土体沉降具有"遮拦效应",在一定程度上能够减少坑外土体沉降;增加下卧层土体模量和地下连续墙的刚度可减少坑外地表沉降,有效控制地铁隧道的变形.  相似文献   

17.
目的研究基坑开挖对邻近既有下卧盾构隧道结构产生的附加应力及不均匀变形,为施工阶段既有隧道的风险评估及控制措施提供参考.方法以哈大客专沈阳站房改造工程为背景,探讨了基坑开挖卸载对下卧盾构隧道造成的主要风险因素及盾构管片破坏的类型,针对土体力学参数的空间变异性及随机性引入蒙特卡洛模拟与三维有限元相结合的方法对衬砌结构的风险事故发生概率进行定量分析.结果基坑开挖卸载之后,隧道横向位移及管片最大压应力超出规定值的概率均为0;上抬变形量及管片最大拉应力超出规定值概率分别为39.8%、2.29%.多种因素下盾构管片总失效概率为41.18%.结论基坑开挖方法要遵循减少单次卸荷量及隧道穿越跨度的原则,并且开挖后应尽量减少基坑的放置时间.  相似文献   

18.
基坑开挖会导致下卧隧道产生明显上浮,采用竖井工法开挖基坑可有效的控制下卧隧道的上浮。以深圳地铁11号线区间某深基坑为例,采用考虑小应变刚度特性的硬化土模型,建立隧道与基坑共同作用的三维有限元模型,对比不同控制措施对隧道的保护效果,并研究竖井开挖基坑过程中下卧隧道的上浮规律。结果表明:竖井工法开挖基坑可以较好的控制隧道上浮,开挖过程中隧道的上浮值与卸载率呈现线性关系;坑底加固对抑制基坑底部土体上浮有较明显的效果;在开挖深度较低情况下,隧道上浮与开挖深度呈线性关系,随着开挖深度增加开始向非线性关系转化;若竖井工法开挖不能满足控制要求,可考虑增加坑底加固方式控制下卧隧道上浮。  相似文献   

19.
深基坑施工引起的邻近地铁隧道变形是我国城市轨道交通施工安全控制和风险评估中较为关心的一类问题。目前针对该问题的理论研究,大都采用Mindlin解求基坑开挖作用在地铁隧道上的附加应力;然后基于Winkler地基模型求解隧道的变形;该方法没有考虑软土的流变性以及地基变形的连续性。根据弹性理论的经典解答Mindlin公式,同时考虑软土的非线性流变性,推导出基坑对称开挖引起下方隧道附加应力的简化计算公式。采用Pasternak双参数地基模型,建立隧道竖向变形的平衡微分方程,得到两侧深基坑开挖引起下穿地铁隧道竖向变形和内力的实用计算表达式。通过将某市深基坑工程下方的隧道变形监测结果与Pasternak地基和Winkler地基计算结果进行对比,验证了采用Pasternak地基的优越性和提出的理论计算方法的有效性。  相似文献   

20.
结合某公寓基坑工程,针对地铁盾构隧道下穿该基坑的复杂环境条件,首先采用简化大井法计算帷幕失效(工况一)下基坑降水坑外地层的水力坡降曲线,采用二维有限元渗流法计算帷幕有效(工况二)下基坑降水坑外地层的水力坡降曲线;接着采用分层总和法计算基坑降水引起地铁盾构隧道的附加沉降,分析基坑降水对下卧地铁的影响.结果表明:(1)考虑截水帷幕失效与有效两工况下,基坑降水引起下卧地铁盾构隧道右线中轴线处水位降深分别为4.2 m、1.5 m;(2)考虑截水帷幕失效与有效两工况下,基坑降水引起下卧地铁盾构隧道右线、中轴线底部最大沉降分别为-2.83 mm、-1.3 mm,均满足轨道交通安全运营的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号