首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of signal transduction pathways involved in direct plant defense mechanisms against pathogens. Here, we demonstrate that Arabidopsis is also a good candidate for studying signal transduction pathways involved in indirect defense mechanisms by showing that: (1) Adult females of Cotesia rubecula, a specialist parasitic wasp of Pieris rapae caterpillars, are attracted to P. rapae-infested Arabidopsis plants. (2) Arabidopsis infested by P. rapae emits volatiles from several major biosynthetic pathways, including terpenoids and green leaf volatiles. The blends from herbivore-infested and artificially damaged plants are similar. However, differences can be found with respect to a few components of the blend, such as two nitriles and the monoterpene myrcene, that were produced exclusively by caterpillar-infested plants, and methyl salicylate, that was produced in larger amounts by caterpillar-infested plants. (3) Genes from major biosynthetic pathways involved in volatile production are induced by caterpillar feeding. These include AtTPS10, encoding a terpene synthase involved in myrcene production, AtPAL1, encoding phenylalanine ammonia-lyase involved in methyl salicylate production, and AtLOX2 and AtHPL, encoding lipoxygenase and hydroperoxide lyase, respectively, both involved in the production of green leaf volatiles. AtAOS, encoding allene oxide synthase, involved in the production of jasmonic acid, also was induced by herbivory.  相似文献   

2.
The role of airborne infochemicals in host selection by the parasitoidCotesia rubecula (Marshal) (Hymenoptera: Braconidae) was examined in a wind tunnel. To elucidate the role of volatile chemicals in attractingC. rubecula to cabbage infested by the host [Pieris rapae L. (Lepidoptera: Pieridae)], the potential sources of volatiles related toP. rapae infestation on cabbage were tested individually. The responses of females to nonhost plant species, bean and geranium, as well as to frass of a nonhost lepidopteran were also examined.C. rubecula was attracted to cabbage previously infested byP. rapae and to frass and regurgitate ofP. rapae. No attraction was observed to larvae ofP. rapae alone. Females were also attracted to mechanically damaged cabbage, cabbage previously infested byPlutella xylostella L. (Lepidoptera: Plutellidae) (a nonhost lepidopteran herbivore), and cabbage previously infested by snails (a nonhost, noninsect herbivore). Intact cabbage, bean, and geranium plants elicited no attraction. A low frequency of attraction was observed to mechanically damaged bean and geranium. Attraction was also observed to frass ofP. xylostella. Volatiles from cabbage related to damage, and volatiles from frass and regurgitate of the host seem to play an important role in guidingC. rubecula to plants infested by its host.  相似文献   

3.
Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5®, were investigated for their impact on the flight response of two parasitoids, Cotesia plutellae and Diadromus collaris. Cotesia plutellae was attracted only to Plutella xylostella-infested cabbage plants in a wind tunnel after an oviposition experience. Female C. plutellae did not distinguish between P. xylostella-infested cabbage plants treated with neem and control P. xylostella-infested plants. However, females preferred infested cabbage plants that had been treated with syringa extract to control infested plants. Syringa extract on filter paper did not attract C. plutellae. This suggests that an interaction between the plant and the syringa extract enhances parasitoid attraction. Diadromus collaris was not attracted to cabbage plants in a wind tunnel and did not distinguish between caterpillar-damaged and undamaged cabbage plants. Headspace analysis revealed 49 compounds in both control cabbage plants and cabbage plants that had been treated with the syringa extract. Among these are alcohols, aldehydes, ketones, esters, terpenoids, sulfides, and an isothiocyanate. Cabbage plants that had been treated with the syringa extract emitted larger quantities of volatiles, and these increased quantities were not derived from the syringa extract. Therefore, the syringa extract seemed to induce the emission of cabbage volatiles. To our knowledge, this is the first example of a plant extract inducing the emission of plant volatiles in another plant. This interesting phenomenon likely explains the preference of C. plutellae parasitoids for cabbage plants that have been treated with syringa extracts.  相似文献   

4.
Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass (Melinis minutiflora). In single-choice tests, females of C. sesamiae chose volatiles from infested and uninfested host plants and molasses grass over volatiles from the control (soil). In dual-choice tests, the wasp preferred volatiles from infested host plants to those from uninfested host plants. There was no discrimination between molasses grass volatiles and those of uninfested maize, uninfested sorghum, or infested maize. The wasp preferred sorghum volatiles over maize. Combining uninfested maize or sorghum with molasses grass did not make volatiles from the combination more attractive as compared to only uninfested host plants. Infested maize alone was as attractive as when combined with molasses grass. Infested sorghum was preferred over its combination with molasses grass. Local growth conditions of the molasses grasses influenced attractiveness to the parasitoids. Volatiles from Thika molasses grass were attractive, while those from Mbita molasses grass were not. Growing the Thika molasses grass in Mbita rendered it unattractive and vice versa with the Mbita molasses grass. This is a case of the same genotype expressing different phenotypes due to environmental factors.  相似文献   

5.
The parasitoids Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Cotesia plutellae (Hymenoptera: Braconidae), and the predator Chrysoperla carnea (Neuroptera: Chrysopidae), are potential biological control agents for the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). We present studies on the interactions between these bioagents and various host-associated volatiles using a Y olfactometer. T. chilonis was attracted to a synthetic pheromone blend (Z11–16:Ald, Z11–16:Ac, and Z11–16:OH in a 1:1:0.01 ratio), to Z11–16:Ac alone, and to a 1:1 blend of Z11–16:Ac and Z11–16:Ald. C. plutellae responded to the blend and to Z11–16:Ac and Z11–16:Ald. Male and female C. carnea responded to the blend and to a 1:1 blend of the major components of the pheromone, although no response was elicited by single compounds. Among the four host larval frass volatiles tested (dipropyl disulfide, dimethyl disulfide, allyl isothiocyanate, and dimethyl trisulfide), only allyl isothiocyanate elicited significant responses in the parasitoids and predator, but C. plutellae and both sexes of C. carnea did respond to all four volatiles. Among the green leaf volatiles of cabbage (Brassica oleracea subsp. capitata), only Z3–6:Ac elicited significant responses from T. chilonis, C. plutellae, and C. carnea, but C. plutellae also responded to E2–6:Ald and Z3–6:OH. When these volatiles were blended with the pheromone, the responses were similar to those elicited by the pheromone alone, except for C. carnea males, which had an increased response. The effect of temperature on the response of the biological agents to a mixture of the pheromone blend and Z3–6:Ac was also studied. T. chilonis was attracted at temperatures of 25–35°C, while C. plutellae and C. carnea responded optimally at 30–35°C and 20–25°C, respectively. These results indicate that the sex pheromone and larval frass volatiles from the diamondback moth, as well as volatile compounds from cabbage, may be used by these natural enemies to locate their diamondback moth host.  相似文献   

6.
Systemically Induced Plant Volatiles Emitted at the Time of “Danger”   总被引:8,自引:0,他引:8  
Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack.  相似文献   

7.
The effects of limonene, a mixture of limonene + carvone (1:1, v/v), and methyl jasmonate (MeJA) on diamondback moth (DBM) (Plutella xylostella L.) oviposition, larval feeding, and the behavior of its larval parasitoid Cotesia plutellae (Kurdjumov) with cabbage (Brassica oleracea L. ssp. capitata, cvs. Rinda and Lennox) and broccoli (B. oleracea subsp. Italica cv Lucky) were tested. Limonene showed no deterrent effect on DBM when plants were sprayed with or exposed to limonene, although there was a cultivar difference. A mixture of limonene and carvone released from vermiculite showed a significant repellent effect, reducing the number of eggs laid on the cabbages. MeJA treatment reduced the relative growth rate (RGR) of larvae on cv Lennox leaves. In Y-tube olfactometer tests, C. plutellae preferred the odors of limonene and MeJA to filtered air. In cv Lennox, the parasitoid preferred DBM-damaged plants with limonene to such plants without limonene. C. plutellae females were repelled by the mixture of limonene + carvone. In both cultivars, exogenous MeJA induced the emission of the sesquiterpene (E,E)-α-farnesene, the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and green leaf volatile (Z)-3-hexenyl acetate + octanal. The attractive effect of limonene and MeJA predicts that these two compounds can be used in sustainable plant protection strategies in organic farming.  相似文献   

8.
Learning of host-induced plant volatiles by Cotesia kariyai females was examined with synthetic chemicals in a wind tunnel. Wasps were preconditioned by exposure to volatiles and feces simultaneously. A blend of four chemicals, geranyl acetate, -caryophyllene, (E)--farnesene, and indole, which are known to be specifically released from plants infested by host larvae Mythimna separata (host-induced blend), elicited a response in naive C. kariyai, but did not enhance the response after conditioning. A blend of five chemicals, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl acetate, -myrcene, and linalool, which are known to be released not only from plants infested by the host larvae, but also from artificially damaged plants or undamaged ones (unspecific blend), elicited little response in naive wasps, but significantly enhanced the wasps' response after conditioning. With a blend of the above nine chemicals, wasps could learn the blend at lower concentrations than they did in the nonspecific blend. Hence, both the host-induced and nonspecific volatile compounds appear to be important for C. kariyai females to learn the chemical cues in host location.  相似文献   

9.
The origin of olfactory stimuli involved in the host microhabitat location inCotesia flavipes, a parasitoid of stem-borer larvae, was investigated in a Y-tube olfactometer. The response of femaleC. flavipes towards different components of the plant-host complex, consisting of a maize plant infested with two or more larvae of the stem borerChilo partellus, was tested in dualchoice tests. The concealed lifestyle of the stem-borer larvae did not limit the emission of volatiles attractive to a parasitoid. A major source of the attractive volatiles from the plant-host complex was the stem-borer-injured stem, including the frass produced by the feeding larvae. Moreover, the production of volatiles attractive to a parasitoid was not restricted to the infested stem part but occurs systemically throughout the plant. The uninfested leaves of a stem-borer-infested plant were found to emit volatiles that attract femaleC. flavipes. We further demonstrate that an exogenous elicitor of this systemic plant response is situated in the regurgitate of a stem-borer larva. When a minor amount of regurgitate is inoculated into the stem of an uninfested plant, the leaves of the treated plant emit volatiles that attract femaleC. flavipes.  相似文献   

10.
The emission of inducible volatile organic compounds (VOCs), i.e., inducible terpenes, and green leaf volatiles (GLVs), is a common response of plants to herbivore attack. These VOCs are involved in the orientation of natural enemies, i.e., predators and parasitoids, toward their herbivore prey or hosts (indirect defense of plants). Terpenes and some GLVs are readily oxidized by ozone (O3), an important oxidant of the low atmosphere and predicted to increase as a result of anthropogenic activity. It has been recently reported that O3 degradation of terpenes and GLVs does not affect signaling in two selected tritrophic systems. Natural enemies may have learned to use oxidation products that are more stable in nature to locate their prey. To understand the role of these compounds on the tritrophic system Brassica oleracea–Plutella xylostella–Cotesia plutellae, we assessed the preference of wasps to different combinations of cabbage VOCs (intact vs. herbivore-induced and herbivore-induced vs. herbivore-induced VOCs) in the presence or absence of O3. We found that C. plutellae preferred P. xylostella-damaged plants at 0 and 120 nl l−1 O3 to intact plants at 0 nl l−1 O3. However, wasps preferred P. xylostella-damaged plants at 0 nl l−1 to P. xylostella-damaged plants at 120 nl l−1 O3. The results suggest that compounds other than terpenes and GLVs are crucial for the orientation of the wasps, but terpenes and GLVs contribute to the behaviorally active VOC blend of herbivore-damaged cabbages by increasing their attraction to them. The products resulting from oxidation of terpenes and GLVs do not seem to play a role in the host location process as speculated previously.  相似文献   

11.
The female parasitic waspCotesia kariyai discriminated between the volatiles of corn leaves infested by younger host larvaePseudaletia separata (first to fourth instar) and uninfested leaves in a Y-tube olfactometer; the wasps were attracted to the infested leaves. In contrast, when corn plants were infested by the later stages (fifth and sixth instar) of the armyworm, the wasps did not distinguish between infested corn leaves and uninfested corn leaves in the olfactometer. Mechanically damaged leaves were no more attractive than undamaged leaves, and host larvae or their feces were not attractive to the parasitoid. Through chemical analysis, the herbivore-induced plant volatiles were identified in the headspace of infested corn leaves. The herbivore-induced volatiles (HIVs) constituted a larger proportion of the headspace of corn leaves infested by early instar armyworms than of corn leaves infested by late instar armyworms. Application of third-instar larval regurgitant onto artificially damaged sites of leaves resulted in emission of parasitoid attractants from the leaf, whereas leaves treated with sixth-instar regurgitant did not. The function of this herbivore-stage related specificity of herbivore-induced synomones is discussed in a tritrophic context.  相似文献   

12.
Induction of plant defense in response to herbivory includes the emission of synomones that attract the natural enemies of herbivores. We investigated whether mechanical damage to Brussels sprouts leaves (Brassica oleracea var.gemmifera) is sufficient to obtain attraction of the parasitoidCotesia glomerata or whether feeding byPieris brassicae caterpillars elicits the release of synomones not produced by mechanically damaged leaves. The response of the parasitoidCotesia glomerata to different types of simulated herbivory was observed. Flight-chamber dual-choice tests showed that mechanically damaged cabbage leaves were less attractive than herbivore-damaged leaves and mechanically damaged leaves treated with larval regurgitant. Chemical analysis of the headspace of undamaged, artificially damaged, caterpillar-infested, and caterpillar regurgitant-treated leaves showed that the plant responds to damage with an increased release of volatiles. Greenleaf volatiles and several terpenoids are the major components of cabbage leaf headspace. Terpenoids are emitted in analogous amounts in all treatments, including undamaged leaves. On the other hand, if the plant is infested by caterpillars or if caterpillar regurgitant is applied to damaged leaves, the emission of green-leaf volatiles is highly enhanced. Our data are in contrast with the induction of more specific synomones in other plant species, such as Lima bean and corn.  相似文献   

13.
Responses of the tachinid fly Exorista japonica Townsend to odors from corn plants infested with the fly’s host, the larvae of the noctuid moth Mythimna separata (Walker), were examined in a wind tunnel. Naïve female flies showed a higher rate of landing on M. separata-infested corn plants from which the host larvae had been removed than on artificially damaged or intact corn plants. When paper impregnated with a solution of headspace volatiles collected from host-infested plants was attached to intact plants, females landed on the plants at a high rate. Females also responded to intact plants to which had been attached with paper impregnated with a synthetic blend of nine chemicals identified previously in host-infested plants. There was an optimum concentration of the synthetic blend for the females’ landing. Of the nine chemicals identified previously, four [(E)-4,8-dimethyl-1,3,7-nonatriene, indole, 3-hydroxy-2-butanone, and 2-methyl-1-propanol] released only by host-infested plants were classified as a host-induced blend. The other five [(Z)-3-hexen-1-yl acetate, (E)-2-hexenal, hexanal, (Z)-3-hexen-1-ol, and linalool] were classified as a non-specific blend released not only by infested plants but also by artificially damaged or intact plants. In the wind tunnel, E. japonica females did not respond to intact plants to which paper containing a solution of non-specific blend or host-induced blend was attached. However, they showed a high level of response to a mixture of the non-specific and host-induced blends. These results indicate that naïve E. japonica use a combination of non-specific and host-induced blends as an olfactory cue for locating host-infested plants.  相似文献   

14.
Plants that are infested by herbivores emit volatile cues that can be used by the natural enemies of the herbivores in their search for hosts. Based on results from behavioral studies, we investigated to what extent intact and herbivore-infested plant species and varieties from the food plant range of Pieris herbivore species differ in the composition of the volatile blends. Parasitoids of Pieris species, Cotesia glomerata and C. rubecula, show differential responses towards various herbivore-infested food plants, whereas differences in responses to plants infested by other herbivore species were less clear. Chemical analysis of the headspace samples of red cabbage, white cabbage, and nasturtium plants that were infested by P. brassicae or P. rapae larvae, or that were intact, yielded 88 compounds including alcohols, ketones, aldehydes, esters, nitriles, terpenoids, sulfides, (iso)thiocyanates, carboxylic acids, and others. The analysis revealed that herbivore-infested plants emit the largest number of compounds in the highest amounts. The plant species affected the volatile blend more than did the herbivore species, and differences between plant varieties were less pronounced than differences between plant species. Differences in headspace composition between plants infested by P. brassicae or P. rapae were mainly of a quantitative nature. Herbivore-infested nasturtium differed considerably from the cabbage varieties in a qualitative way. Headspace compositions of red and white cabbage varieties were comparable to that of the food plant Brussels sprouts (Brassica oleracea gemmifera cv. Titurel) as determined in earlier studies in our laboratory. With respect to plant response to herbivory, nasturtium differed considerably from the cabbage varieties analyzed so far and shows resemblance with Lima bean, cucumber, and corn. These plant species produce a greater quantity and variety of volatiles under herbivore attack than intact plants. The results of this study are discussed in relation to behavioral observations on C. glomerata and C. rubecula.  相似文献   

15.
To elucidate the identity of the volatile compounds that could be involved in the searching behavior of the parasitoidCotesia rubecula Marshall (Hymenoptera: Braconidae), the volatiles released by cabbage and frass of Lepidoptera feeding on cabbage were collected and analyzed using a gas chromatograph-mass spectrometer. The volatiles emitted by intact cabbage were -pinene, -pinene, myrcene, 1,8-cineole,n-hexyl acetate,cis-3-hexen-1-yl acetate, and dimethyl trisulfide. Mechanical damage on an intact plant induced the release of two more compounds,trans-2-hexenal and 1-methoxy-3-methylene-2-pentanone. Current feeding by larvae ofPieris rapae L. (Pieridae) induced the plant to release all the compounds released after mechanical damage and additionally 4-methyl-3-pentenal and allyl isothiocyanate. Current feeding by larvae ofPlutella xylostella L. (Plutellidae) induced the plant to release all the compounds present after mechanical damage and additionally allyl isothiocyanate. The volatiles emitted after feeding by the lepidopterans had ceased were the same as those emitted by cabbage damaged by mechanical means. The blend of volatiles emitted by frass was comprised of plant chemicals, mainly sulfur compounds. Frass ofP. rapae emitted allyl isothiocyanate, methyl isothiocyanate, methyl propyl sulfide, dimethyl trisulfide,S-methyl methane thiosulfinate, 4-methyl-3-pentenal,trans-2-hexenal, and 2,3-dihydro-4-methyl furan. Frass ofP. xylostella emitted only dimethyl trisulfide andS-methyl methane thiosulfinate. The blend of volatiles emitted by frass is herbivore-species specific.  相似文献   

16.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

17.
Biological activity and chemistry of host plant volatiles were investigated for Diorhabda elongata, Brullé (Coleoptera: Chrysomelidae), a biological control agent for the invasive tree, saltcedar (Tamarix spp., Tamaricaceae). Gas chromatographic–electroantennographic detection (GC-EAD) analysis of volatiles collected from adult D. elongata feeding on saltcedar foliage or from saltcedar foliage alone showed 15 antennally active compounds. These compounds were more abundant in collections from beetle-infested foliage. Antennally active compounds were identified by GC–mass spectrometry (MS) and confirmed with authentic standards. The emissions of the most abundant GC-EAD-active compounds, green leaf volatiles (GLV), were quantitated by GC-MS. A blend of four GLV compounds, mimicking the natural blend ratio, was highly attractive to male and female D. elongata in the field, and a combination of GLV and male-produced aggregation pheromone attracted significantly greater numbers of D. elongata than did either bait alone. A preliminary experiment with a blend of seven additional GC-EAD-active saltcedar volatiles did not show any behavioral activity. The combination of the pheromone and the green leaf odor blend could be a useful attractant in detecting the presence of the biocontrol agent, D. elongata, in stands of saltcedar newly colonized by the beetle.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

18.
The Kanzawa spider mite, Tetranychus kanzawai, is a polyphagous herbivore that feeds on various plant families, including the Leguminacae. Scars made by the mite on lima bean leaves (Phaseolus lunatus) were classified into two types: white and red. We obtained two strains of mites—“White” and “Red”—by selecting individual mites based on the color of the scars. Damage made by the Red strain induced the expression of genes for both basic chitinase, which was downstream of the jasmonic acid (JA) signaling pathway, and acidic chitinase, which was downstream of the salicylic acid (SA) signaling pathway. White strain mites also induced the expression of the basic chitinase gene in infested leaves but they only slightly induced the acidic chitinase gene. The Red genotype was dominant over the White for the induction of the acidic chitinase gene. The amount of endogenous salicylates in leaves increased significantly when infested by Red strain mites but did not increase when infested by White strain mites. JA and SA are known to be involved in the production of lima bean leaf volatiles induced by T. urticae. The blend of volatiles emitted from leaves infested by the Red strain were qualitatively different from those infested by the White strain, suggesting that the SA and JA signaling pathways are differently involved in the production of lima bean leaf volatiles induced by T. kanzawai of different strains.Ryo Matsushima and Rika Ozawa contributed equally to this work.  相似文献   

19.
Young, gregariously living larvae of the willow leaf beetles Plagiodera versicolora are known to exhibit characteristic aggregation-dispersion-reaggregation behavior and local fidelity to a host tree. In this study, we investigated whether plant volatiles induced by feeding P. versicolora larvae were involved in the reaggregation behavior. Under laboratory conditions, we conducted dual-choice bioassays and found that the first and second instars discriminated between volatiles from leaves infested by larvae and volatiles from uninfested leaves. The discriminative behavior was dependent on both the time leaves were infested and the age of discriminating larvae. First and second instars preferred odor from 1-d-infested leaves to odor from uninfested leaves, whereas third instars (solitary stage) did not discriminate between these volatile blends. Odor from 2-d-infested leaves was preferred to odor from 1-d-infested leaves by first instars, whereas odor from leaves infested for 3 d was not attractive to these very young larvae. Neither was odor of leaves infested for 1 d and then left uninfested for 1 or 2 d attractive to young larvae. The data suggest that the first and second instars use volatiles from a leaf newly infested by conspecific larvae as one of the reaggregation cues. We detected several herbivore-induced compounds in the headspace of the attractive leaves. Among those, a mixture of synthetic (E)-β-ocimene, (Z)-β-ocimene, allo-ocimene, and linalool was found to attract the larvae.  相似文献   

20.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号