首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以挤压铸造A356.2铝合金发动机悬置支架为研究对象,对支架铸态组织、不同固溶时效热处理后的显微组织与力学性能,以及内部缺陷进行了分析研究。结果表明,挤压铸造A356.2铝合金铸态组织由α-Al相和Al-Si共晶组成,晶粒尺寸约为148μm,二次枝晶间距约为20μm;经固溶时效处理后,共晶Si一部分溶入α-Al相中,一部分以粒状、球状形式分布在α-Al晶界;固溶时间、时效温度和时效时间对A356.2合金的力学性能有一定影响。试样经过535℃×6h固溶+8min水淬+170℃×6h时效处理后,抗拉强度为340.5MPa,屈服强度为274.5MPa,伸长率为10%,满足支架整体力学性能要求。  相似文献   

2.
研究了Al-20Si-1Sm合金在半固态等温热处理过程中的组织演变。结果表明,随着等温热处理温度和时间的增加,液相量增加,共晶α-Al相球化,尺寸先减小后增大。共晶Si呈羽毛状,初生Si裂解成小块状并明显钝化。在等温温度为610℃,保温时间为15min时,合金中共晶α-Al相的球化效果最佳,平均尺寸为37μm,初生Si平均尺寸为30μm。  相似文献   

3.
研究了凝固组织和Mg含量对A356合金快速热处理的影响。结果表明,A356合金经过Sr变质后,其凝固组织中的共晶Si形貌由纤维状变成球状,初生α相的晶粒尺寸减小。经过540℃×20 min+170℃×90 min快速热处理,合金微观组织中的Mg_2Si强化相能够充分固溶到基体中,其抗拉强度与T6态的基本相同。随着合金中Mg含量增加,固溶处理时,Mg_2Si相充分固溶进基体所需要的时间增加。当合金中Mg含量由0.3%增加到0.9%时,则需要经过540℃×40 min+170℃×90 min快速热处理,其力学性能与T6态的基本相同。  相似文献   

4.
采用光镜、扫描电镜对1种镍基单晶高温合金的铸态组织和不同温度固溶处理后的组织进行了观察,研究了不同温度固溶处理对γ′相尺寸、γ/γ′共晶、成分偏析的影响。结果表明:合金枝晶间γ′相的固溶温度高于枝晶干γ′相的固溶温度,随固溶处理温度的升高,γ′相尺寸略有增加,γ/γ′共晶量及成分偏析降低;1290℃,4h,AC固溶处理后合金枝晶干、间γ′相全部固溶,1310℃,4h,AC固溶处理后合金中γ/γ′共晶全部消除,1320℃固溶处理时,合金中出现初溶现象;确定1310℃,4h,AC为合金的固溶处理工艺。  相似文献   

5.
采用EBSD、硬度测试等手段,研究了短时固溶处理对AA6011铝合金冷轧板组织和硬度的影响。研究表明:经570℃×60 s固溶处理AA6011合金平均晶粒尺寸为23.3μm,与实验室中常用的560℃×30 min固溶处理试样晶粒尺寸23.8μm基本一致,未出现晶粒异常长大。AA6011合金板材最佳短时固溶处理工艺为570℃×60 s,此工艺下合金试样硬度达到67 HV,达到570℃固溶处理硬度最大值的95.7%,既能达到合金性能要求,又有利于工业化生产。  相似文献   

6.
以Al-12Si-6Cu-1.5Ni-0.3Cr-0.8Ce-0.2La铸造耐热铝合金为研究对象,对其进行双级固溶处理,以及人工时效。通过OM、SEM观察以及拉伸性能测试等手段,研究不同二级固溶温度和时间对合金显微组织和力学性能的影响。结果发现,随二级固溶温度升高和固溶时间延长,合金初生Si相钝化,共晶Si和网状相溶断成颗粒状或块状,室温和高温抗拉强度呈先增加后降低的趋势,当二级固溶温度达到530℃,时间为2h时综合性能最好。对试样进行200℃×6h的时效处理,并进行室温和高温(300℃)拉伸试验,结果表明,当合金经过490℃×2h+530℃×2h+200℃×6h热处理后,室温抗拉强度达342.0MPa,高温抗拉强度达到159.9MPa。  相似文献   

7.
对比了Cu-15Ni-8Sn合金铸态、均匀化退火态(850℃×8 h)、锻造态、固溶态(840℃×1 h)和时效态(400℃×6 h)的硬度、强度和伸长率变化规律,分析了不同工艺状态下合金的显微组织和断口形貌。结果表明:铸态合金的组织为发达的树枝晶;经均匀化退火后,枝晶组织消失,层片状组织完全溶于铜基体;均匀化退火态合金经锻造后,晶粒尺寸明显减小,平均晶粒尺寸从58.78μm减小到4.22μm,抗拉强度由395.39 MPa提高到659.50 MPa,细晶强化为主要强化机制;固溶态合金由于溶质原子的充分固溶,伸长率大幅提升到46.7%;进一步经时效处理后,抗拉强度提高到802.50 MPa。  相似文献   

8.
通过对添加B和Sb细化变质的ZL101合金进行固溶和时效处理,研究了热处理对合金显微组织和力学性能的影响。结果表明,添加B和Sb后,共晶Si由粗大片状变成细小针状,长条状初生α-Al等轴化。在相同热处理工艺下添加B和Sb的合金组织中共晶Si充分球化,尺寸分布更均匀,基体中析出时效相更多更弥散,此时合金显微硬度(HV)由未细化变质的102.4提高到114.6。当热处理工艺为540℃×6h固溶+190℃×5h时效时,添加B和Sb的合金抗拉强度和伸长率最高,分别为332.8 MPa和11.73%,相比于未细化变质合金,提高了21.6%和90.7%,并且断口中出现大量均匀细小的等轴状韧窝结构。  相似文献   

9.
采用螺旋选晶法,制备了一种镍基单晶高温合金。在非真空箱式电阻炉中进行分级均匀化热处理,研究了热处理制度对合金显微组织及持久性能的影响。结果表明:合金的铸态组织由γ-Ni固溶体相、初生和次生的γ-′Ni3Al相、以及γ/γ′共晶相组成;1 305~1 310℃、16 h固溶处理后,次生γ′全部固溶,少量γ/γ′共晶没有完全固溶;1 315℃、16 h固溶处理后,γ/γ′共晶全部固溶;1 320℃、2 h固溶处理后,出现少量初熔;两次时效处理明显改变了γ′的尺寸、形貌及分布;合金经1 180℃、2 h 1 290℃、2 h 1 315℃、16 h AC 1 140℃、4 h AC 870℃、24 h AC完全热处理后,在1 100℃,137 MPa条件下持久寿命达到100 h。持久裂纹主要沿与拉应力垂直的枝晶间横向段萌生扩展,与γ/γ′共晶完全固溶状态相比,未固溶的γ/γ′共晶更容易成为主要裂纹源。  相似文献   

10.
研究了热处理对Cu-3.0Ni-0.75Si-0.3Co合金电导率、硬度和组织演变规律的影响,并探讨了合金的强化机理。结果表明,随固溶温度升高,合金的晶界和晶内的Ni3Si2和CoSi相粒子数量逐渐减少,合金的过饱和固溶度不断增大。在950℃×1h固溶后,由于第二相粒子的尺寸较小、数量很少,在扫描电镜图片中出现的第二相粒子未能在XRD图谱中发现,说明在950℃×1h固溶处理后溶质元素能较为充分溶于基体中。经950℃×1h固溶处理和60%的冷变形后,电导率随时效时间的延长而升高,之后趋于平稳。随着时效温度的升高,电导率也不断提高;硬度随时效时间的延长先升高,后降低;时效温度越高,到达峰值所需的时间越短。在950℃×1h固溶处理,经60%的冷变形,450℃×6h时效处理后,合金的综合性能较好,此时,合金硬度(HB)为257,电导率为20.18 MS/m。  相似文献   

11.
研究了模具温度对Al-Si合金中共晶Si形貌的影响。结果表明:模具温度改变了合金铸态组织中Si相形貌,影响了其在随后固溶处理中的变化进程。对于经过适当变质处理的Al-Si共晶合金,在模具温度较低时,铸态共晶Si相为细小的纤维状,经短时固溶处理就能得到良好的共晶Si相形貌;而在模具温度较高时,铸态Si相表现为较粗的纤维或蠕虫状,固溶处理后,Si相的尺寸较大,形态较差。  相似文献   

12.
对真空压铸(50.6kPa真空度)试样进行不同时间的固溶处理,用光学显微镜、扫描电镜、EDS、XRD研究真空压铸Al-Si-Cu合金固溶处理过程中Si、Cu分布的变化。结果表明,试样在500℃固溶处理2h,Si相可以得到较好的尺寸和形态分布,并且表面起泡尺寸小于100μm,相对于普通压铸,真空压铸试样可以得到更加细化的共晶Si粗化;在500℃固溶处理0.5h,Cu部分溶入基体,开始均匀化,共晶Si的粗化、分布不均匀同样会导致Cu元素分布不均匀。  相似文献   

13.
研究了固溶时间对半固态成形过共晶Al-Si-Cu-Mg合金显微组织与力学性能的影响。结果表明,固溶处理改善了合金的显微组织,提高了合金的力学性能。随着固溶时间延长,共晶Si相发生颈缩、溶断及粒状化,初生Si相钝化,Al_2Cu相等强化相尺寸减小,合金的力学性能提高。当固溶10h时,合金的抗拉强度、屈服强度和硬度(HB)达到峰值,分别为311MPa、291 MPa和132.0。随着固溶时间继续延长,共晶Si粗化,合金的力学性能降低。  相似文献   

14.
《铸造》2015,(12)
研究了固溶处理温度和固溶处理时间对挤压铸造Al17.5Si4Cu0.5Mg0.1Mn合金显微组织及硬度的影响。结果表明:固溶处理后合金的显微组织得到明显改善,硬度大幅度提高。随着固溶温度的增加,共晶Si相逐渐粒化,合金的布氏硬度值逐渐增加,当固溶温度为525℃时,共晶Si相形貌相对圆整,合金具有最大布氏硬度值;随着固溶时间的延长,合金显微组织中的共晶Si相发生熔断、粒化、粗化现象,合金的布氏硬度呈现先上升后下降的趋势,当固溶时间为6 h时,合金的布氏硬度达到最大值HB 124。试验得到的挤压铸造Al17.5Si4Cu0.5Mg0.1Mn合金的最佳固溶处理工艺为525℃,保温时间为6 h。  相似文献   

15.
对K424合金进行不同温度的固溶处理((1200~1240)℃×4 h+空冷)。对固溶后的合金进行975℃/196 MPa条件下的高温持久试验和室温拉伸试验,并对其显微组织进行表征。结果表明,K424合金在1220、1230和1240℃完全固溶并重新析出均匀、细小且立方度较高的γ′相。相较于(1200~1210)℃×4 h不完全固溶处理,经(1220~1240)℃×4 h完全固溶处理后K424合金的持久寿命明显提高,但室温强度和塑性略低,经1220℃×4 h固溶处理后,K424合金的持久寿命最高,达到97.8 h,是最优固溶处理工艺。不规则的大尺寸γ′相钉扎合金晶界以及阻碍晶内位错滑移,是不完全固溶处理后K424合金室温强度和塑性略高的原因。较高的错配度和立方度、共晶基本溶解以及较高的γ′相体积分数是1220℃×4 h固溶处理后K424合金持久寿命最高的主要原因。  相似文献   

16.
利用光学显微镜、扫描电镜与透射电镜研究了固溶温度和时效处理对热轧态825合金晶粒尺寸和析出相的种类及其形态的影响。结果表明:1020~1250℃保温30 min固溶,合金的平均晶粒尺寸由45μm增大到330μm;1050~1080℃和1150~1200℃分别发生一次晶粒尺寸急剧长大的过程;计算出热轧态825合金的再结晶激活能约为279.14 k J/mol。经700℃×50 h时效与800℃×50 h、900℃×50 h时效,合金中晶界处的主要析出相分别为M_(23)C_6相和M_6C相;700℃×50 h时效晶界上析出相呈网状、晶粒内部有大量弥散分布的Ti C颗粒;800℃×50 h时效晶界上的析出相呈链状,900℃×50 h时效过程中发生了再结晶。  相似文献   

17.
研究了不同La含量对Al-8.5Si-3.5Cu-1.2Fe合金显微组织和力学性能的影响。结果表明,La的加入能变质α-Al、共晶Si相和针状β-Al_5FeSi相,且会生成AlSiFeLa相。当La含量为0.6%时,变质效果最佳,T6态La含量为0.6%的合金的最大抗拉强度为233MPa。α-Al相一次枝晶臂平均长度由181.3μm减至55.2μm,共晶Si相尺寸由13.0μm缩短至6.9μm,β-Al_5FeSi相尺寸由24.2μm减至14.7μm。当La含量超过0.6%时,β-Al_5FeSi相有变粗大的趋势,合金强度下降。T6热处理后,合金成分没有变化,但β-Al_5FeSi相出现溶断现象,且端部钝化,共晶Si转变为颗粒状。  相似文献   

18.
以Al-20Si合金为研究对象,添加Cu-P和Al-RE中间合金对其进行变质处理,采用SEM扫描电镜、X射线衍射仪和光学金相显微镜分析变质处理对合金中Si相形貌的影响。结果表明,P与Al反应生成AlP化合物,可以作为初生Si相的异质形核质点,显著细化初生Si,稀土吸附固溶在Si相的生长台阶,使Al-20Si合金中Si相的晶格常数增大,X射线衍射图谱发生小角度偏移;随着变质时间延长,合金中板条状的初生Si变得细小圆润,平均晶粒尺寸由85.6μm减小至13.2μm,共晶Si由长针状转变为短杆状,弥散分布在基体中,硬度(HB)由68.5提升至80.8。  相似文献   

19.
采用扫描电镜和拉伸试验等研究了Ti555211合金在不同热处理制度下的组织和性能。结果表明:Ti555211合金经800℃固溶2 h空冷+620℃时效8 h空冷时,其性能匹配达到最佳状态,此时其抗拉强度为1315 MPa,屈服强度为1263 MPa,伸长率和断面收缩率分别为14.5%和40%;随着固溶温度的增加,合金显微组织中初生α相晶粒尺寸从3.8μm降低到2.8μm,初生α相含量从34.52%降低到20.96%。当固溶温度继续上升,超过相变点后,Ti555211合金组织由双态组织转变为魏氏组织,韧性增加。  相似文献   

20.
针对传统铸造过共晶Al-Si合金中存在粗大初生Si和针片状共晶Si的问题,采用蛇形通道复合Sr变质处理工艺制备了Al-28Si合金半固态浆料,对半固态浆料的显微组织以及初生Si的析出温度进行了研究。结果表明,该工艺可充分细化初生Si、有效变质共晶Si,初生Si尺寸由165.26μm细化到45.68μm,共晶Si由长针状转变为点状、蠕虫状。随着Sr加入量的增加,初生Si的析出温度先升高后降低,初生Si的晶粒尺寸呈增大趋势。具有大量纤维状分支的共晶Si在长大时受到了铝相抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号