首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial recN gene sequences (>1 kb) were obtained from 35 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of recN sequence analysis as an alternative to DNA–DNA hybridization (DDH) for distinguishing closely related species was also assessed. The recN based phylogeny mostly confirmed the conventional 16S rRNA and gyrB gene-based phylogenies and thus provides further support for these phylogenetic groupings. As is the case for the gyrB gene, pairwise recN sequence similarities cannot be used to predict the DNA relatedness between type strains but the recN genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. A recN genetic distance of >0.04 between two Amycolatopsis strains is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking).  相似文献   

2.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

3.
Our aim was to investigate the capability of each of three genes, 16S rRNA, gyrB and aroE, to discriminate, first, among Bacillus thuringiensis H serotypes; second, among B. thuringiensis serovars from the same H serotype; and third, among B. thuringiensis strains from the same serovar. The 16S rRNA, gyrB and aroE genes were amplified from 21 B. thuringiensis H serotypes and their nucleotide sequences determined. Additional strains from four B. cereus sensu lato species were included for comparison purposes. These sequences were pair-wise compared and phylogenetic relationships were revealed. Each of the three genes under study could discriminate among B. thuringiensis H serotypes. The gyrB and aroE genes showed a discriminatory power among B. thuringiensis H serotypes up to nine fold greater than that of the 16S rRNA gene. The gyrB gene was retained for subsequent analyses to discriminate B. thuringiensis serovars from the same H serotype and to discriminate strains from same serovar. A total of 42 B. thuringiensis strains, which encompassed 25 serovars from 12 H serotypes, were analyzed. The gyrB gene nucleotide sequences were different enough as to be sufficient to discriminate among B. thuringiensis serovars from the same H serotype and among B. thuringiensis strains from the same serovar. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The primary structures of the genes encoding the β-subunits of a type II topoisomerase (gyrase, gyrB) and a type IV topoisomerase (parE) were determined for 15 strains of thermophilic bacteria of the genus Geobacillus. The obtained sequences were used for analysis of the phylogenetic similarity between members of this genus. Comparison of the phylogenetic trees of geobacilli constructed on the basis of the 16S rRNA, gyrB, and parE gene sequences demonstrated that the level of genetic distance between the sequences of the genes encoding the β-subunits of type II topoisomerases significantly exceeded the values obtained by comparative analysis of the 16S rRNA gene sequences of Geobacillus strains. It was shown that, unlike the 16S rRNA gene analysis, comparative analysis of the gyrB and parE gene sequences provided a more precise determination of the phylogenetic position of bacteria at the species level. The data obtained suggest the possibility of using the genes encoding the β-subunits of type II topoisomerases as phylogenetic markers for determination of the species structure of geobacilli.  相似文献   

5.
The type strains of 32 species of 13 genera of the family Microbacteriaceae were analysed with respect to gene-coding phylogeny for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA), and polyphosphate kinase (ppk). The resulting gene trees were compared with the 16S rRNA gene phylogeny of the same strains. The topology of neighbour-joining and maximum parsimony phylogenetic trees, based on nucleic-acid sequences and protein sequences of housekeeping genes, differed from one another, and no gene tree was identical to that of the 16S rRNA gene tree. Most genera analysed containing >1 strain formed phylogenetically coherent taxa. The three pathovars of Curtobacterium flaccumfaciens clustered together to the exclusion of the type strains of other Curtobacterium species in all DNA - and protein-based analyses. In no tree did the distribution of a major taxonomic marker, i.e., diaminobutyric acid versus lysine and/or ornithine in the peptidoglycan, or acyl type of peptidoglycan, correlate with the phylogenetic position of the organisms. The changing phylogenetic position of Agrococcus jenensis was unexpected: This strain defined individual lineages in the trees based on 16S rRNA and gyrB and showed identity with Microbacterium saperdae in the other three gene trees.  相似文献   

6.

Background  

The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter.  相似文献   

7.
Summary  A taxonomic revision of the palm genus Podococcus (Arecaceae) is presented. Two species are recognised: P. barteri, a species relatively widespread in a coastal band from Nigeria to the D. R. Congo and P. acaulis, a species previously considered conspecific to P. barteri, almost exclusively confined to Gabon. The taxonomic history, morphology, distribution and conservation status of the genus and each species are discussed  相似文献   

8.
Three ascosporogenous yeast strains were isolated from the gut of the passalid beetle, Odontotaenius disjunctus, inhabiting on rotten oak trees. DNA sequence comparison and other taxonomic characteristics identified the strains as a novel species in the genus Kazachstania. The name Kazachstania intestinalis sp. nov. (type strain EH085T = ATCC MYA-4658T = CBS 11839T) is proposed for the strains. The yeast is homothallic, producing persistent asci with 1–4 spheroidal ascospores. Molecular phylogeny from ribosomal RNA gene sequences placed this novel species on the basal lineage of a clade including Kazachstania lodderae, Kazachstania exigua, Kazachstania martiniae, and other related Kazachstania spp., but none of those species was a close sister to K. intestinalis.  相似文献   

9.
Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by “in silico” northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members’ evolutionary relationships and gene functions implicated in plant growth, development and metabolism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Summary  Eleven species comprising the Madagascan genus Vaughania are subsumed within the large pantropical genus Indigofera. Six new combinations are made; the remaining species were originally described in Indigofera.  相似文献   

11.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

13.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

14.
DNA/DNA genome microarray analysis together with genome sequencing suggests that the genome of members of the genus Streptomyces would seem to have a common structure including a linear genomic structure, a core of common syntenous Actinomycete genes, the presence of species specific terminal regions and two intermediate group of syntenous genes that seem to be genus specific. We analyzed Streptomyces species using DNA/DNA microarray comparative genome analysis. Only Streptomyces rimosus failed to give a congruent genome pattern for the genes found in Streptomyces coelicolor. We expanded the analysis to include a number of strains related to the type strain of S. rimosus and obtained a similar divergence from the main body of Streptomyces species. These strains showed very close identity to the original strain with no gene deletion or duplication detected. The 16S rRNA sequences of these S. rimosus strains were confirmed as very similar to the S. rimosus sequences available from the Ribosomal Database Project. When the SSU ribosomal RNA phylogeny of S. rimosus is analyzed, the species is positioned at the edge of the Streptomyces clade. We conclude that S. rimosus represents a distinct evolutionary lineage making the species a worthy possibility for genome sequencing.  相似文献   

15.
16.
Summary  A new monotypic bamboo genus Phuphanochloa (Poaceae: Bambusoideae) from north-eastern Thailand is described, together with a new species, P. speciosa.  相似文献   

17.
Nicotiana section Alatae contains eight species with variable flower sizes and morphologies. Section members readily hybridize in the glasshouse, but no hybrids have been observed in natural sympatric and parapatric populations. To investigate interspecific crossing relationships with respect to mechanisms preventing hybridization, all members of section Alatae were intercrossed in a complete diallel. We found positive correlation between the pistil length of the pollen donor and interspecific seed set relative to the conspecific cross. Pollen tube growth rate and pollen donor pistil length were positively correlated as well. Furthermore, pollen from short-pistil members of section Alatae could only grow a maximum distance proportional to, but greater than, their own pistil lengths. Our results show that pollen tube growth capacity (i.e., rate and distance), provides a hybridization barrier in long-pistil species × short-pistil species crosses. We also found another hybridization barrier not specifically related to pollen tube growth capacity in short-pistil species × long-pistil species. Taken together, these barriers can generally be described by a ‘pistil-length mismatch’ rule; in section Alatae, pollen has the most success fertilizing ovules from species with pistil lengths similar to their own. This rule could contribute to hybridization barriers in Section Alatae because the species display dramatically different pistil lengths. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Although Anabaena is one of the most prevalent planktonic freshwater genus in China, there are few taxonomic reports of Anabaena strains by morphology and genetics. In this study, morphological characteristics and phylogenetic relationships of seven Anabaena strains isolated from two plateau lakes, Lakes Dianchi and Erhai, were investigated. Morphological characteristics such as morphology of filament, cellular shapes and sizes, relative position of heterocytes and akinetes, and presence or absence of aerotopes, were described for these seven strains. Phylogenetic relationships were determined by constructing 16S rRNA gene tree using the neighbor-joining algorithm. The seven strains were morphologically identified as three groups, and phylogenetic analysis based on 16S rRNA gene sequences also showed that these seven strains were in three groups. Strains EH-2, EH-3, and EH-4 were in group A belonging to the Anabaena circinalis and A. crassa group, and strains DC-1, DC-2, and EH-1 were in group B and identified as A. flos-aquae. Strain DC-3 without aerotopes was significantly different from the other isolated strains and was determined as A. cylindrica. Handling editor: J. Padisak  相似文献   

19.
Recombination has been suggested to be an important factor for the genetic variation of bacterial genes, but few studies have dealt with intragenic recombination between the same or closely related species of cyanobacteria. Here we provide strong evidence for recombination in the microcystin synthetase (mcy) gene cluster of the toxic cyanobacteria Microcystis spp. This gene cluster contains 10 genes (mcyA to J) that encode a mixed polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) complex. mcy gene sequences were determined for four selected regions (within mcyA, D, G, and J) within the mcy gene cluster from 1 Canadian and 10 Asian toxic Microcystis and compared with previously published mcy sequences. Split decomposition analysis indicated a reticulate phylogeny of mcyA, and several potential recombination tracts of mcyA were identified by the RDP analysis and a runs test implemented in GENECONV. In contrast, no recombination was detected in the mcyD, G, and J sequences. However, discrepancies among the four mcy gene genealogies were evident from the results of independent split decomposition analyses, which were further supported by incongruence length difference (ILD) tests. Taken together, these findings suggest that both intragenic and intergenic recombination within the mcy gene cluster contributes to the genetic diversity of the mcy genes of Microcystis spp.This article contains online supplementary material.  相似文献   

20.
Introgression has been considered to be one of main factors leading to phylogenetic incongruence among different datasets at lower taxonomic levels. In the plants of Pinaceae, the mtDNA, cpDNA, and nuclear DNA (nrDNA) may have different evolutionary histories through introgression because they are inherited maternally, paternally and biparentally, respectively. We compared mtDNA, cpDNA, and two low-copy nrDNA phylogenetic trees in the genus Pinus subgenus Strobus, in order to detect unknown past introgression events in this group. nrDNA trees were mostly congruent with the cpDNA tree, and supported the recent sectional and subsectional classification system. In contrast, mtDNA trees split the members of sect. Quinquefoliae into two groups that were not observed in the other gene trees. The factors constituting incongruence may be divided into the following two categories: the different splits within subsect. Strobus, and the non-monophyly of subsect. Gerardianae. The former was hypothesized to have been caused by the past introgression of cpDNA, mtDNA or both between Eurasian and North American species through Beringia. The latter was likely caused by the chimeric structure of the mtDNA sequence of P. bungeana, which might have originated through past hybridization, or through a horizontal transfer event and subsequent recombination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号