首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Clinical neurophysiology》2021,132(2):372-381
ObjectiveChanges in the N20/P25 amplitude of somatosensory evoked potentials (SEP) of the median nerve have been found to correlate with those in cortical regional cerebral blood flow (rCBF). Our study presents the use of median nerve SEP amplitude in predicting the clinical outcome of urgent surgical internal carotid artery (ICA) recanalization.MethodsA total of 27 patients suffering an acute ischemic stroke (AIS) with extracranial ICA occlusion within 24 h were prospectively recruited. The primary preoperative endpoints included the SEP amplitude absolute value (SEP-amp) and the SEP amplitude side-to-side ratio (SEP-ratio).Clinical outcome at 3 months postoperatively was assessed using the modified Rankin scale (mRS-3M).ResultsThe positive predictive values (PPVs) for SEP-amp and SEP-ratio were 95.5% and 100%, respectively, with the negative predictive values (NPVs) being 60.0% and 100%, respectively. The SEP-ratio correlated fully with mRS-3M.ConclusionThe median SEP side-to-side N20/P25 amplitude ratio seems to be a very strong positive and negative predictor of the clinical outcome of urgent recanalization of an extracranial ICA occlusion.SignificanceThe results suggest that cortical evoked activity may help in selection patient for surgical recanalization and predict clinical recovery after an acute ischemic stroke.  相似文献   

2.
《Clinical neurophysiology》2019,130(1):128-137
ObjectiveHigh frequency oscillations (HFO) between 80–500 Hz are markers of epileptic areas in intracranial and maybe also scalp EEG. We investigate simultaneous recordings of scalp and intracranial EEG and hypothesize that scalp HFOs provide important additional clinical information in the presurgical setting.MethodsSpikes and HFOs were visually identified in all intracranial scalp EEG channels. Analysis of correlation of event location between intracranial and scalp EEG as well as relationship between events and the SOZ and zone of surgical removal was performed.Results24 patients could be included, 23 showed spikes and 19 HFOs on scalp recordings. In 15/19 patients highest scalp HFO rate was located over the implantation side, with 13 patients having the highest scalp and intracranial HFO rate over the same region. 17 patients underwent surgery, 7 became seizure free. Patients with poor post-operative outcome showed significantly more regions with HFO than those with seizure free outcome.ConclusionsScalp HFOs are mostly located over the SOZ. Widespread scalp HFOs are indicative of a larger epileptic network and associated with poor postsurgical outcome.SignificanceAnalysis of scalp HFO add clinically important information about the extent of epileptic areas during presurgical simultaneous scalp and intracranial EEG recordings.  相似文献   

3.
《Clinical neurophysiology》2020,131(11):2527-2536
ObjectiveTo investigate the diagnostic utility of high frequency oscillations (HFOs) via scalp electroencephalogram (EEG) in infantile spasms.MethodsWe retrospectively analyzed interictal slow-wave sleep EEGs sampled at 2,000 Hz recorded from 30 consecutive patients who were suspected of having infantile spasms. We measured the rate of HFOs (80–500 Hz) and the strength of the cross-frequency coupling between HFOs and slow-wave activity (SWA) at 3–4 Hz and 0.5–1 Hz as quantified with modulation indices (MIs).ResultsTwenty-three patients (77%) exhibited active spasms during the overnight EEG recording. Although the HFOs were detected in all children, increased HFO rate and MIs correlated with the presence of active spasms (p < 0.001 by HFO rate; p < 0.01 by MIs at 3–4 Hz; p = 0.02 by MIs at 0.5–1 Hz). The presence of active spasms was predicted by the logistic regression models incorporating HFO-related metrics (AUC: 0.80–0.98) better than that incorporating hypsarrhythmia (AUC: 0.61). The predictive performance of the best model remained favorable (87.5% accuracy) after a cross-validation procedure.ConclusionsIncreased rate of HFOs and coupling between HFOs and SWA are associated with active epileptic spasms.SignificanceScalp-recorded HFOs may serve as an objective EEG biomarker for active epileptic spasms.  相似文献   

4.
《Clinical neurophysiology》2019,130(10):1926-1936
ObjectiveDuring deep brain stimulation (DBS) surgery, we analysed somatosensory evoked potentials (SSEPs) using microelectrode recordings (MERs) in patients under general anaesthesia.MethodsWe obtained MERs from 5 patients with refractory epilepsy. Off-line analysis isolated local field potentials (LFPs, 2–200 Hz) and high frequency components (HFCs, 0.5–5 kHz). Trajectories were reconstructed off-line.ResultsThe ventral caudate (V.c.) nucleus was most frequently recorded from (171 mm). Very high frequency oscillations (VHFOs) were recorded up to 8 mm in length from all 4 electrodes but were most frequently recorded from the V.c. The properties of VHFOs were similar among all nuclei (frequency >1500 Hz, amplitude ∼3 µV, starting time ∼14 ms, duration 8–9 ms). Consecutive recordings did not show any synchronization or propagation, but a new kind of potential (high frequency oscillation, HFO) appeared abruptly inside the V.c. (frequency = 848 ± 66 Hz, amplitude = 5.2 ± 1.8 µV starting at 17.7 ± 0.5 ms, spanning 3.4 ± 0.3 ms).ConclusionsVHFOs are widely extending and cannot be ascribed to the V.c. HFOs in patients under general anaesthesia can serve as a landmark to identify the V.c. in thalamic DBS surgery.SignificanceThalamic processing involves nuclei other than the V.c, and HFO can be used to improve DBS surgery.  相似文献   

5.
《Clinical neurophysiology》2021,132(10):2431-2439
ObjectiveThe purpose of this investigation was to better understand the effects of concussions on the ability to selectively up or down-regulate incoming somatosensory information based on relevance.MethodsMedian nerve somatosensory-evoked potentials (SEPs) were elicited from electrical stimulation and recorded from scalp electrodes while participants completed tasks that altered the relevance of specific somatosensory information being conveyed along the stimulated nerve.ResultsWithin the control group, SEP amplitudes for task-relevant somatosensory information were significantly greater than for non-relevant somatosensory information at the earliest cortical processing potentials (N20-P27). Alternatively, the concussion history group showed similar SEP amplitudes for all conditions at early processing potentials, however a pattern similar to controls emerged later in the processing stream (P100) where both movement-related gating and facilitation of task-relevant information were present.ConclusionsPreviously concussed participants demonstrated impairments in the ability to up-regulate relevant somatosensory information at early processing stages. These effects appear to be chronic, as this pattern was observed on average several years after participants’ most recent concussion.SignificanceGiven the role of the prefrontal cortex in relevancy-based facilitation during movement-related gating, these findings lend support to the notion that this brain area may be particularly vulnerable to concussive forces.  相似文献   

6.
《Clinical neurophysiology》2020,131(5):1134-1141
ObjectiveTo investigate how high frequency oscillations (HFOs; ripples 80–250 Hz, fast ripples (FRs) 250–500 Hz) and spikes in intra-operative electrocorticography (ioECoG) relate to cognitive outcome after epilepsy surgery in children.MethodsWe retrospectively included 20 children who were seizure free after epilepsy surgery using ioECoG and determined their intelligence quotients (IQ) pre- and two years postoperatively. We analyzed whether the number of HFOs and spikes in pre- and postresection ioECoGs, and their change in the non-resected areas relate to cognitive improvement (with ≥ 5 IQ points increase considered to be clinically relevant (=IQ+ group) and < 5 IQ points as irrelevant (=IQ− group)).ResultsThe IQ+ group showed significantly more FRs in the resected tissue (p = 0.01) and less FRs in the postresection ioECoG (p = 0.045) compared to the IQ− group. Postresection decrease of ripples on spikes was correlated with postoperative cognitive improvement (correlation coefficient = −0.62 with p = 0.01).ConclusionsPostoperative cognitive improvement was related to reduction of pathological HFOs signified by removing FR generating areas with subsequently less residual FRs, and decrease of ripples on spikes in the resection edge of the non-resected area.SignificanceHFOs recorded in ioECoG could play a role as biomarkers in the prediction and understanding of cognitive outcome after epilepsy surgery.  相似文献   

7.
《Clinical neurophysiology》2020,131(11):2657-2666
ObjectiveThe goal of this study was to investigate the spatial extent and functional organization of the epileptogenic network through cortico-cortical evoked potentials (CCEPs) in patients being evaluated with intracranial stereoelectroencephalography.MethodsWe retrospectively included 25 patients. We divided the recorded sites into three regions: epileptogenic zone (EZ); propagation zone (PZ); and noninvolved zone (NIZ). The root mean square of the amplitudes was calculated to reconstruct effective connectivity network. We also analyzed the N1/N2 amplitudes to explore the responsiveness influenced by epileptogenicity. Prognostic analysis was performed by comparing intra-region and inter-region connectivity between seizure-free and non-seizure-free groups.ResultsOur results confirmed that stimulation of the EZ caused the strongest responses on other sites within and outside the EZ. Moreover, we found a hierarchical connectivity pattern showing the highest connectivity strength within EZ, and decreasing connectivity gradient from EZ, PZ to NIZ. Prognostic analysis indicated a stronger intra-EZ connection in the seizure-free group.ConclusionThe EZ showed highest excitability and dominantly influenced other regions. Quantitative CCEPs can be useful in mapping epileptic networks and predicting surgical outcome.SignificanceThe generated computational connectivity model may enhance our understanding of epileptogenic networks and provide useful information for surgical planning and prognosis prediction.  相似文献   

8.
《Clinical neurophysiology》2020,131(8):1782-1797
ObjectiveIctal electrographic patterns are widely thought to reflect underlying neural mechanisms of seizures. Here we studied the degree to which seizure patterns are consistent in a given patient, relate to particular brain regions and if two candidate biomarkers (high-frequency oscillations, HFOs; infraslow activity, ISA) and network activity, as assessed with cross-frequency interactions, can discriminate between seizure types.MethodsWe analyzed temporal changes in low and high frequency oscillations recorded during seizures, as well as phase-amplitude coupling (PAC) to monitor the interactions between delta/theta and ripple/fast ripple frequency bands at seizure onset.ResultsSeizures of multiple electrographic patterns were observed in a given patient and brain region. While there was an increase in HFO rate across different electrographic patterns, there are specific relationships between types of HFO activity and onset region. Similarly, changes in PAC dynamics were more closely related to seizure onset region than they were to electrographic patterns while ISA was a poor indicator for seizure onset.ConclusionsOur findings suggest that the onset region sculpts neurodynamics at seizure initiation and that unique features of the cytoarchitecture and/or connectivity of that region play a significant role in determining seizure mechanism.SignificanceTo learn how seizures are initiated, researchers would do well to consider other aspects of their manifestation, in addition to their electrographic patterns. Examination of onset pattern in conjunction with the interactions between different oscillatory frequencies in the context of different brain regions might be more informative and lead to more reliable clinical inference as well as novel therapeutic approaches.  相似文献   

9.
《Clinical neurophysiology》2021,132(10):2357-2364
ObjectivesTo investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents.MethodsSEPs were recorded in 6 patients suffering from Parkinson’s disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed.ResultsAfter median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts.ConclusionsStimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential.SignificanceOur results shed light on the subcortical processing of the somatosensory input of different modalities.  相似文献   

10.
《Clinical neurophysiology》2019,130(5):647-654
ObjectiveTo evaluate the diagnostic value of vestibular evoked myogenic potentials (VEMPs) in the assessment of brainstem function integrity in patients with amyotrophic lateral sclerosis (ALS).MethodsThis was a prospective case-control study including 30 definite or probable ALS patients divided into two groups (with or without brainstem involvement) and 30 healthy controls. Cervical (c-), masseter (m-) and ocular VEMP (o-VEMP) measurements were obtained for all the participants.ResultsThe c-VEMP mean p13 and n23 were significantly prolonged in the ALS patients. The interside peak differences in p13 and n23 of c-VEMP and in n10 and p15 of o-VEMP were significantly prolonged. The rates of alteration in c-VEMP, m-VEMP and o-VEMP in the ALS patients were 67%, 40%, and 45%, respectively. The ALS patients with brainstem involvement had a significantly higher percentage of VEMP abnormalities than did those without brainstem involvement (p = 0.027).Conclusionsc-VEMP is a sensitive tool to detect lower levels of brainstem involvement. Impairments in o-VEMP and m-VEMP indicate involvement of the upper brainstem. The use of combined VEMPs may provide useful insights into the pathophysiological mechanism of ALS.SignificanceVEMPs may be useful in the evaluation of brainstem dysfunction in ALS patients.  相似文献   

11.
《Clinical neurophysiology》2020,131(1):259-264
ObjectivesFasciculation potentials (FP) are an important consideration in the electrophysiological diagnosis of ALS. Muscle ultrasonography (MUS) has a higher sensitivity in detecting fasciculations than electromyography (EMG), while in some cases, it is unable to detect EMG-detected fasciculations. We aimed to investigate the differences of FP between the muscles with and without MUS-detected fasciculations (MUS-fas).MethodsThirty-one consecutive patients with sporadic ALS were prospectively recruited and in those, both needle EMG and MUS were performed. Analyses of the amplitude, duration, and number of phases of EMG-detected FPs were performed for seven muscles per patient, and results were compared between the muscles with and without MUS-fas in the total cohort.ResultsThe mean amplitude and phase number of FP were significantly lower in patients with EMG-detected FP alone (0.39 ± 0.25 mV and 3.21 ± 0.88, respectively) than in those with both FP and MUS-fas (1.22 ± 0.92 mV and 3.74 ± 1.39, respectively; p < 0.0001 and p = 0.017, Welch’s t-test).ConclusionSmall FP may be undetectable with MUS. MUS cannot replace EMG in the diagnostic approach for ALS.SignificanceClinicians should use a combination of EMG and MUS for the detection and quantitative analysis of fasciculation in ALS.  相似文献   

12.
《Clinical neurophysiology》2020,131(4):942-950
ObjectiveAmyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads to inexorable motor decline and a median survival of three years from symptom onset. Surface EMG represents a major technological advance that has been harnessed in the development of novel neurophysiological biomarkers. We have systematically reviewed the current application of surface EMG techniques in ALS.MethodsWe searched PubMed to identify 42 studies focusing on surface EMG and its associated analytical methods in the diagnosis, prognosis and monitoring of ALS patients.ResultsA wide variety of analytical techniques were identified, involving motor unit decomposition from high-density grids, motor unit number estimation and measurements of neuronal hyperexcitability or neuromuscular architecture. Some studies have proposed specific diagnostic and prognostic criteria however clinical calibration in large ALS cohorts is currently lacking. The most validated method to monitor disease is the motor unit number index (MUNIX), which has been implemented as an outcome measure in two ALS clinical trials.ConclusionSurface EMG offers significant practical and analytical flexibility compared to invasive techniques. To capitalise on this fully, emphasis must be placed upon the multi-disciplinary collaboration of clinicians, bioengineers, mathematicians and biostatisticians.SignificanceSurface EMG techniques can enrich effective biomarker development in ALS.  相似文献   

13.
《Brain stimulation》2022,15(3):717-726
BackgroundThe human primary sensory (S1) and primary motor (M1) hand areas feature high-frequency neuronal responses. Electrical nerve stimulation evokes high-frequency oscillations (HFO) at around 650 Hz in the contralateral S1. Likewise, transcranial magnetic stimulation (TMS) of M1 can evoke a series of descending volleys in the corticospinal pathway that can be detected non-invasively with a paired-pulse TMS protocol, called short interval intracortical facilitation (SICF). SICF features several peaks of facilitation of motor evoked potentials in contralateral hand muscles, which are separated by inter-peak intervals resembling HFO rhythmicity.HypothesisIn this study, we tested the hypothesis that the individual expressions of HFO and SICF are tightly related to each other and to the regional myelin content in the sensorimotor cortex.MethodsIn 24 healthy volunteers, we recorded HFO and SICF, and, in a subgroup of 20 participants, we mapped the cortical myelin content using the ratio between the T1- and T2-weighted MRI signal as read-out.ResultsThe individual frequencies and magnitudes of HFO and SICF curves were tightly correlated: the intervals between the first and second peak of cortical HFO and SICF showed a positive linear relationship (r = 0.703, p < 0.001), while their amplitudes were inversely related (r = ?0.613, p = 0.001). The rhythmicity, but not the magnitude of the high-frequency responses, was related to the cortical myelin content: the higher the cortical myelin content, the shorter the inter-peak intervals of HFO and SICF.ConclusionThe results confirm a tight functional relationship between high-frequency responses in S1 (i.e., HFO) and M1 (i.e., as measured with SICF). They also establish a link between the degree of regional cortical myelination and the expression of high-frequency responses in the human sensorimotor cortex, giving further the opportunity to infer their generators.  相似文献   

14.
《Clinical neurophysiology》2019,130(8):1299-1310
ObjectiveTo study using magnetoencephalography (MEG) the spatio-temporal dynamics of neocortical responses involved in sensory processing and early change detection in Friedreich ataxia (FRDA).MethodsTactile (TERs) and auditory (AERs) evoked responses, and early neocortical change detection responses indexed by the mismatch negativity (MMN) were recorded using tactile and auditory oddballs in sixteen FRDA patients and matched healthy subjects. Correlations between the maximal amplitude of each response, genotype and clinical parameters were investigated.ResultsEvoked responses were detectable in all FRDA patients but one. In patients, TERs were delayed and reduced in amplitude, while AERs were only delayed. Only tactile MMN responses at the contralateral secondary somatosensory cortex were altered in FRDA patients. Maximal amplitudes of TERs, AERs and tactile MMN correlated with genotype, but did not correlate with clinical parameters.ConclusionsIn FRDA, the amplitude of tactile MMN responses at SII cortex are reduced and correlate with the genotype, while auditory MMN responses are not altered.SignificanceSomatosensory pathways and tactile early change detection are selectively impaired in FRDA.  相似文献   

15.
《Clinical neurophysiology》2021,132(8):1919-1926
ObjectiveIn order to evaluate the clinical utility even under general anesthesia, the present study aimed to clarify the effect of anesthesia on the cortico–cortical evoked potentials (CCEPs).MethodsWe analyzed 14 patients’ data in monitoring the integrity of the dorsal language pathway by using CCEPs both under general anesthesia with propofol and remifentanil and awake condition, with the main aim of clarifying the effect of anesthesia on the distribution and waveform of CCEPs.ResultsThe distribution of larger CCEP response sites, including the locus of the maximum CCEP response site, was marginally affected by anesthesia. With regard to similarity of waveforms, the mean waveform correlation coefficient indicated a strong agreement. CCEP N1 amplitude increased by an average of 25.8% from general anesthesia to waking, except three patients. CCEP N1 latencies had no correlation in changes between the two conditions.ConclusionsWe demonstrated that the distribution of larger CCEP responses was marginally affected by anesthesia and that the CCEP N1 amplitude had tendency to increase from general anesthesia to the awake condition.SignificanceThe CCEP method provides the efficiency of intraoperative monitoring for dorsal language white matter pathway even under general anesthesia.  相似文献   

16.
《Clinical neurophysiology》2021,132(10):2332-2341
ObjectiveHepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE.Methods23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups.ResultsMEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity.ConclusionsOur study revealed reduced synaptic plasticity of the primary motor cortex in HE.SignificanceReduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.  相似文献   

17.
《Clinical neurophysiology》2020,131(9):2255-2264
ObjectiveWe aimed to delineate the engagement of cortico-cortical and cortico-subcortical networks in the generation of epileptic spasms (ES) using integrated neurophysiological techniques.MethodsSeventeen-year-old male patient with intractable ES underwent chronic subdural electrode implantation for presurgical evaluation. Networks were evaluated in ictal periods using high-frequency oscillation (HFO) analysis and in interictal periods using magnetoencephalography (MEG) and simultaneous electroencephalography, and functional magnetic resonance imaging (EEG-fMRI). Cortico-cortical evoked potentials (CCEPs) were recorded to trace connections among the networks.ResultsIctal HFO revealed a network comprising multilobar cortical regions (frontal, parietal, and temporal), but sparing the positive motor area. Interictally, MEG and EEG-fMRI revealed spike-and-wave-related activation in these cortical regions. Analysis of CCEPs provided evidence of connectivity within the cortico-cortical network. Additionally, EEG-fMRI results indicate the involvement of subcortical structures, such as bilateral thalamus (predominantly right) and midbrain.ConclusionsIn this case study, integrated neurophysiological techniques provided converging evidence for the involvement of a cortico-cortical network (sparing the positive motor area) and a cortico-subcortical network in the generation of ES in the patient.SignificanceCortico-cortical and cortico-subcortical pathways, with the exception of the direct descending corticospinal pathway from the positive motor area, may play important roles in the generation of ES.  相似文献   

18.
《Clinical neurophysiology》2021,132(12):3183-3189
ObjectiveThis study evaluates diagnostic accuracy of the proposed ‘Gold Coast’ (GC) diagnostic criteria for amyotrophic lateral sclerosis (ALS).MethodsFive European centres retrospectively sampled consecutive patients referred for electromyography on suspicion of ALS. Patients were classified according to the GC criteria, the revised El Escorial (rEE) criteria and the Awaji (AW) criteria without and with the ‘Possible’ category (+ Poss). Reference standard was ALS confirmed by disease progression at follow-up.ResultsOf 404 eligible patients 272 were diagnosed as ALS, 94 had mimicking disorders, 35 were lost for follow-up, and three had insufficient data. Sensitivity for the GC criteria was 88.2% (95% CI: 83.8-91.8%), which was higher than for previous criteria, of which the AW + Poss criteria reached the highest sensitivity of 77.6% (95% CI: 72.2–82.4%) (p < 0.001). Specificity was high for all criteria. The increase in sensitivity for the GC criteria was mainly due to the inclusion of 28 patients with progressive muscular atrophy (PMA).ConclusionsThe simpler GC criteria increase the sensitivity, primarily due to considering PMA as a form of ALS with high specificity preserved.SignificanceThis validation study supports that GC criteria should be used in clinical practice and may be used for inclusion in trials.  相似文献   

19.
《Clinical neurophysiology》2021,132(3):800-807
ObjectiveTo investigate the availability of any motor unit reserve capacity during fatiguing endurance testing in patients with spinal muscular atrophy (SMA).MethodsWe recorded surface electromyography (sEMG) of various muscles of upper- and lower extremities of 70 patients with SMA types 2–4 and 19 healthy controls performing endurance shuttle tests (ESTs) of arm and legs. We quantitatively evaluated the development of fatigability and motor unit recruitment using time courses of median frequencies and amplitudes of sEMG signals. Linear mixed effect statistical models were used to evaluate group differences in median frequency and normalized amplitude at onset and its time course.ResultsNormalized sEMG amplitudes at onset of upper body ESTs were significantly higher in patients compared to controls, yet submaximal when related to maximal voluntary contractions, and showed an inverse correlation to SMA phenotype. sEMG median frequencies decreased and amplitudes increased in various muscles during execution of ESTs in patients and controls.ConclusionsDecreasing median frequencies and increasing amplitudes reveal motor unit reserve capacity in individual SMA patients during ESTs at submaximal performance intensities.SignificancePreserving, if not expanding motor unit reserve capacity may present a potential therapeutic target in clinical care to reduce fatigability in individual patients with SMA.  相似文献   

20.
《Clinical neurophysiology》2020,131(4):958-966
ObjectiveTo characterise the regional cortical patterns underlying clinical symptomatology in amyotrophic lateral sclerosis (ALS).Methods138 patients prospectively underwent transcranial magnetic stimulation studies from hand and leg cortical regions of each hemisphere, obtaining motor evoked potentials from all four limbs. Patients were categorised by clinical phenotype and underwent clinical and peripheral evaluation of disease.ResultsCortical dysfunction was evident across the motor cortices, with reduction in short-interval intracortical inhibition (SICI) suggesting the presence of widespread cortical hyperexcitability, most prominently from clinically affected regions (hand p < 0.0001; leg p < 0.01). In early disease, cortical abnormalities were asymmetric between hemispheres, focally corresponding to clinical site-of-onset (p < 0.05). Degrees of cortical dysfunction varied between phenotypes, with the bulbar-onset cohort demonstrating greatest reduction in SICI (p = 0.03).ConclusionsThe pattern of cortical dysfunction appears linked to clinical evolution in ALS, with early focal asymmetry preceding widespread changes in later disease. Cortical differences across phenotypes may influence clinical variability.SignificanceThis is the first study to extensively map cortical abnormalities from multiple motor regions across hemispheres. The early cortical signature mirrors symptom laterality, supporting a discrete region of disease onset. Phenotypes appear to exist within a pathophysiological continuum, but cortical heterogeneity may mediate observed differences in clinical outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号