首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cook, S. J., Robinson, Z. P., Fairchild, I. J., Knight, P. G., Waller, R. I. & Boomer, I. 2009: Role of glaciohydraulic supercooling in the formation of stratified facies basal ice: Svínafellsjökull and Skaftafellsjökull, southeast Iceland. Boreas, 10.1111/j.1502‐3885.2009.00112.x. ISSN 0300‐9483. There is need for a quantitative assessment of the importance of glaciohydraulic supercooling for basal ice formation and glacial sediment transfer. We assess the contribution of supercooling to stratified facies basal ice formation at Svínafellsjökull and Skaftafellsjökull, southeast Iceland, both of which experience supercooling. Five stratified basal ice subfacies have previously been identified at Svínafellsjökull, but their precise origins have not been determined. Analysis of stratified basal ice stable isotope compositions (δ18O and δD), spatial distribution and physical characteristics demonstrates that two subfacies present at both glaciers are consistent with supercooling. These ‘supercool’ subfacies account for 42% of stratified facies exposed at Svínafellsjökull, although estimates at Skaftafellsjökull are precluded by limited basal ice exposure. Owing to their high debris contents, supercooling‐related facies contribute a debris flux of 4.8 to 9.6 m3 m?1 a?1 at Svínafellsjökull (83% of the stratified facies debris flux). Other stratified subfacies, formed by non‐supercooling processes, account for 58% of the stratified basal ice at Svínafellsjökull, but only contribute a debris flux of 1.0 to 2.0 m3 m?1 a?1 (17% of the stratified facies debris flux). We conclude that supercooling has a significant role in glacial sediment transfer, although in stratified basal ice formation its role is less significant at these locations than has been reported elsewhere.  相似文献   

3.
Shaw, John 1979 1201: Genesis of the Sveg tills and Rogen moraines of central Sweden: a model of basal melt out. Boreas, Vol. 8, pp. 409–426. Oslo. ISSN 0300–9483. Climatic amelioration in permafrozen regions causes basal melting of Polar glaciers. Supraglacial debris concentrated at the ice surface by ablation at first inhibits the ablation process. When the surface debris is equal in thickness to the active layer no further surface melting occurs. Till deposition processes in permafrozen areas are consequently dominated by melt out from a basal isothermal zone at melting point. The basal melt-out process is influenced by englacial structures and forms which are also largely responsible for the resultant landforms and deposits. Such basal melt out may also occur in areas with less severe climate. A model for deposition largely by basal melt out is documented by field observations in central Sweden. Melt-out tills in areas of former extending or uniform glacier flow show an upward facies change corresponding to poorly attenuated and highly attenuated englacial facies. The till facies are recognised in terms of stratigraphic position, surface form, internal structure, and clast lithology, size, shape, and long-axis orientation and dip. Areas of former compressive flow are characterised by basal melt out of folded and dislocated englacial debris zones in which the stacking of debris produced transverse moraine ridges. The internal structure of the ridges includes folded till bodies dislocated by thrust planes, horizontal, stratified layers cross-cutting the tectonic structures, and characteristic distributions of clast long-axis orientation and dip. The morphology of the ridges at both the macro and micro scales is in accord with the proposed model of formation. The morphological and sedimentological associations produced largely by basal melt out are summarized. An additional implication of the proposed model is that gradual lowering of the supraglacial sediment surface by bottom melting of regionally stagnant ice may be the cause of widespread marine or lacustrine transgression.  相似文献   

4.
The Marathon portion of the Ouachita thrust belt consists of a highly deformed allochthonous wedge of Cambrian-Pennsylvanian slope strata (Marathon facies) that was transported to the northwest and emplaced over Pennsylvanian foredeep sediments. The foredeep strata in turn overlie early-middle Paleozoic shelfal sediments which are deformed by late Paleozoic basement-involved reverse faults. The Dugout Creek thrust is the basal thrust of the allochthon. Shortening in this sheet and overlying sheets is 80%. Steep imbricate faults link the Dugout Creek thrust to upper level detachments forming complex duplex zones. Progressive thrusting and shortening within the allochthon folded the upper level detachments and associated thrust sheets. The Caballos Novaculite is the most competent unit within the Marathon facies and controlled development of prominent detachment folds.Deeper imbricate sheets composed of the Late Pennsylvanian foredeep strata, and possibly early-middle Paleozoic shelfal sediments developed concurrently with emplacement of the Marathon allochthon and folded the overlying allochthon. Following termination of thrusting in the earliest Permian, subsidence and deposition shifted northward to the Delaware, Midland and Val Verde foreland basins.  相似文献   

5.
This study analyses acoustic profiles of two mid-shelf troughs, the JOIDES Basin and Pennell Trough in the western Ross Sea, Antarctica. These troughs are subglacial erosion features formed by repeated advance of streaming ice onto the Ross Sea continental shelf. Sediment wedge formations, interpreted to have been deposited at the most seaward grounding zone during the Last Glacial Maximum (LGM), are observed within the mid-shelf region of these troughs. By correlating high-resolution acoustic profiles with core samples, we resolve the stratigraphy of these wedge formations to assess the relationships between bathymetry, subglacial sediment distribution and palaeo-ice-stream configuration. The grounding zone wedge geometries were controlled by the pre-existing topography. The JOIDES and Pennell Troughs were only partially infilled during the LGM. Axial diamict progradation from the landward margin of the troughs indicates enhanced flow (debris supply) along the axis of ice flow. Differences in grounding zone geometries indicate a decrease in basal debris deposition and/or supply during ice recession. The lack of a recessional ice-shelf facies indicates that either the ice shelf was absent during retreat, or that there was no melt-out of basal debris.  相似文献   

6.
Melting glaciers and ice caps on Baffin Island contribute roughly half of the sea-level rise from all ice in Arctic Canada, although they comprise only one-fourth of the total ice in the region. The uncertain future response of arctic glaciers and ice caps to climate change motivates the use of paleodata to evaluate the sensitivity of glaciers to past warm intervals and to constrain mechanisms that drive glacier change. We review the key patterns and chronologies of latest Pleistocene and Holocene glaciation on Baffin Island. The deglaciation by the Laurentide Ice Sheet occurred generally slowly and steadily throughout the Holocene to its present margin (Barnes Ice Cap) except for two periods of rapid retreat: An early interval 12 to 10 ka when outlet glaciers retreated rapidly through deep fiords and sounds, and a later interval 7 ka when ice over Foxe Basin collapsed. In coastal settings, alpine glaciers were smaller during the Younger Dryas period than during the Little Ice Age. At least some alpine glaciers apparently survived the early Holocene thermal maximum, which was several degrees warmer than today, although data on glacier extent during the early Holocene is extremely sparse. Following the early Holocene thermal maximum, glaciers advanced during Neoglaciation, beginning in some places as early as 6 ka, although most sites do not record near-Little Ice Age positions until 3.5 to 2.5 ka. Alpine glaciers reached their largest Holocene extents during the Little Ice Age, when temperatures were 1–1.5 °C cooler than during the late 20th century. Synchronous advances across Baffin Island throughout Neoglaciation indicate sub-Milankovitch controls on glaciation that could involve major volcanic eruptions and solar variability. Future work should further elucidate the state of glaciers and ice caps during the early Holocene thermal maximum and glacier response to climate forcing mechanisms.  相似文献   

7.
High-pressure mafic granulites (including retrograded eclogites) have been reported from the Trans-North China Orogen, a Paleoproterozoic orogenic belt along which two discrete continental blocks, referred to as the Eastern and Western Blocks, were amalgamated to form the North China Craton. Extensive metamorphic investigations and geochronology carried out over the last few years provide important insights into the age and significance of these high-pressure granulites, which are critical in understanding of the timing and tectonic processes involved in the assembly of the North China Craton.Most high-pressure mafic granulites in the Trans-North China Orogen preserve the high-pressure granulite facies assemblage garnet + plagioclase + clinopyroxene + quartz, the medium-pressure granulite facies assemblage garnet + plagioclase + clinopyroxene + orthopyroxene ± quartz, the low-pressure granulite facies assemblage orthopyroxene + clinopyroxene + plagioclase ± quartz, and the amphibolite facies assemblage hornblende + plagioclase. Minor high-pressure granulites preserve the early eclogite facies mineral assemblage of garnet + quartz + omphacite pseudomorph (clinopyroxene + Na-rich plagioclase), indicating that they are retrograded eclogites. These mineral assemblages and their P–T estimates define a clockwise P–T path involving near-isothermal decompression and cooling following the peak high-pressure metamorphism, which suggests that they formed during continent–continent collision. Field mapping and geochronology indicate that the precursors of these high-pressure granulites were mafic dykes which were emplaced at 1915 Ma and underwent high-pressure granulite facies metamorphism at 1.85 Ga. Taken together, the high-pressure granulites in the Trans-North China are considered to have resulted from final collision between the Eastern and Western Blocks to form the North China Craton at 1.85 Ga, not at 2.5 Ga as recently proposed by some authors.  相似文献   

8.
The small granite plutons occurring at the contact of the Singhbhum-Orissa Iron Ore craton (IOC) to the north and the Eastern Ghat Granulite Belt (EGGB) to the south in eastern Indian shield are characterised by the presence of enclaves of the granulites of EGGB and the greenschist facies rocks of IOC. These granites also bear the imprints of later cataclastic deformation which is present at the contact of the IOC and the EGGB. In situ Pb-Pb zircon dating of these granites gives minimum age of their formation 2.80 Ga. A whole-rock three point Rb-Sr isochron age of this rock is found to be 2.90 Ga. Therefore, the true age of formation of these granites will be around 2.90–2.80 Ga. These granitic rocks also contain xenocrystic zircon components of 3.50 Ga and show a later metasomatic or metamorphic effect 2.48 Ga obtained from the analyses on overgrowths developed on 2.80 Ga old zircon cores. The presence of granulitic enclaves within these contact zone granite indicates that the granulite facies metamorphism of the EGGB is 2.80 Ga or still older in age. The cataclastic deformations observed at the contact zone of the two adjacent cratons is definitely younger than 2.80 Ga and possibly related to 2.48 Ga event observed from the overgrowths. As 2.80 Ga granite plutons of small dimensions are also observed at the western margin of the IOC; it can be concluded that a geologic event occurred 2.80 Ga over the IOC when small granite bodies evolved at the marginal part of this craton after its stabilisation at 3.09 Ga.  相似文献   

9.
Internal structure, stable isotope composition and tritium concentration were measured in and around debris‐bearing ice at the margin of Storglaciären, where englacial debris bands have previously been inferred to form by thrusting. Two types of debris bands were distinguished: (i) an unsorted diamicton band that is laterally continuous for more than 200 m, and (ii) well‐sorted sand and gravel bands that are lenticular and discontinuous. Above‐background tritium levels and enrichment of δ18 O and δD in ice from the diamicton band indicate entrainment by basal freeze‐on since 1952. Isotopic enrichment and tritium‐free ice in the sandy debris bands also indicate entrainment in freezing water, but prior to 1952. The lenticular cross‐section, sorting and stratification of the sandy bands suggest that they were deposited englacially. The basally accreted diamicton band has been elevated tens of metres above the bed and presently overlies the englacially deposited sandy bands, suggesting that the stratigraphy has been disrupted. Three interpretations could account for these observations: (i) thrusting of fast‐moving ice over slow, marginal ice uplifting recently accreted basal ice along the fault; (ii) folding near the margin, elevating young basal ice over older basal and englacial ice; and (iii) debris‐band formation by an unknown mechanism and subsequent contamination of ice geochemical properties by meltwater flow through debris bands. Although none of these interpretations is consistent with all measurements, folding is most compatible with observations and local ice‐flow kinematics.  相似文献   

10.
ABSTRACT Four types of sediment gravity flow deposits occur interbedded with rhythmite shale, siltsone, mudstone and minor diamictite in a 230-m thick Carboniferous glacial sequence. Shear and plug zones are present in the cohesive debris flow deposits which have a diamictic texture. The high-density turbidity flow deposits which consist of coarse to medium-grained clastics, are characterized by both normal and reverse grading. The medium to fine-grained low-density turbidity flow deposits show normal grading and consist of Bouma units A, B, D and E. Deposition occurred by gravity flow, suspension settling and minor basal melt-out during ice retreat along the southern margin of the Kalahari Basin. Immediately basinwards of the ice grounding line a proximal diamictite facies consisting predominantly of cohesive and high-density turbidity flow deposits, and minor melt-out tills formed. A distal sedimentary facies of graded sandstone and siltstone units deposited by low-density turbidity flows and suspension settling of muds with ice-rafted debris is located basinwards.  相似文献   

11.
Brenda L. Hall   《Quaternary Science Reviews》2009,28(21-22):2213-2230
A history of Holocene glaciation in the Antarctic and sub-Antarctic affords insight into questions concerning present and future ice-sheet and mountain-glacier behavior and global climate and sea-level change. Existing records permit broad correlation of Holocene ice fluctuations within the region. In several areas, ice extent was less than at present in mid-Holocene time. An important exception to this is the West Antarctic Ice Sheet, which has undergone continued recession throughout the Holocene, probably in response to internal dynamics. The first Neoglacial ice advances occurred at 5.0 ka, although some sites (e.g., western Ross Sea) lack firm evidence for glacial expansion at that time. Glaciers in all areas underwent renewed growth in the past millennium, and most have subsequently undergone recession in the past 50 years, ranging from near-catastrophic in parts of the Antarctic Peninsula to minor in the western Ross Sea region and sections of East Antarctica. This magnitude difference likely reflects the much greater warming that is taking place in the Antarctic Peninsula region today as compared to East Antarctica.  相似文献   

12.
《Sedimentary Geology》2007,193(1-4):21-31
Three basal-till facies from the Lower Vistula valley were examined. The lowest facies, a sandy diamicton with characteristic sand inclusions forming detached and attenuated folds, is overlain by a bedded till characterized by alternating diamictons and sorted sediment layers. The uppermost till facies is a homogeneous diamicton.The three till facies must have been formed by complex subglacial sedimentary processes during the first Late Weichselian ice advance. The lowest till facies is interpreted as a deformation till, and accumulated during the initial stage of the ice advance. The middle facies represents a stagnation phase during the initial ice advance, and was deposited during recurrent periods of subglacial melt-out followed by meltwater sedimentation. The upper till facies was deposited by direct subglacial melt-out during a stage of stagnant ice.It is suggested that bed deformation and temporarily enhanced basal sliding have been caused by ice streaming at the time of the ice-sheet advance and just before its stagnation.  相似文献   

13.
Previous interdisciplinary paleoenvironmental and archaeological research along the Río Verde Valley of Oaxaca, Mexico, showed that Holocene erosion in the highland valleys of the upper drainage basin triggered geomorphic changes in the river's coastal floodplain. This article uses stratigraphic data from sediment cores extracted from Laguna Pastoría, an estuary in the lower Río Verde Valley, to examine changes in coastal geomorphology potentially triggered by highland erosion. Coastal lagoon sediments contain a stratigraphically and chronologically distinct record of major hurricane strikes during late Holocene times. Three distinct storm facies are identified from sediment cores obtained from Laguna Pastoría, which indicate that profound coastal environmental changes occurred within the region and are correlated with increased sediment supplied from highland erosion. The Chione/Laevicardium facies was deposited in an open bay while the Mytella/barnacle facies and sand facies were deposited in an enclosed lagoon following bay barrier formation. We argue that highland erosion triggered major geomorphic changes in the lowlands including bay barrier formation by 2500 cal yr B.P. These environmental changes may have had significant effects on human populations in the region. The lagoon stratigraphy further indicates an increase in mid–late Holocene hurricane activity, possibly caused by increased El Niño frequencies.  相似文献   

14.
Continental Oxygen Isotopic Record of the Last 170,000 Years in Jerusalem   总被引:1,自引:0,他引:1  
A long radiometrically dated oxygen isotopic record of continental climatic variations since the penultimate glaciation was obtained from a stalagmite deposited in a sealed cave in Jerusalem. This record shows that speleothems have the potential of assigning dates to long- and short-term climatic events, with possible refining of Milankovitch tuning of ice and marine records which themselves are not datable. Short-term (1000-yr) events are very significant in the region, reaching 50% of glacial/interglacial fluctuations. The Mediterranean Sea was the most probable source of local precipitation throughout the last glacial cycle.  相似文献   

15.
Changes in the sedimentologic and stratigraphic characteristics of the coal-bearing middle Oligocene–late Miocene siliciclastic Amagá Formation, northwestern Colombia, reflect major fluctuations in the stratigraphic base level within the Amagá Basin, which paralleled three major stages of evolution of the middle Cenozoic Andean Orogeny. These stages, which are also traceable by the changes in the compositional modes of sandstones, controlled the occurrence of important coal deposits. The initial stage of evolution of the Amagá Basin was related to the initial uplift of the Central Cordillera of Colombia around 25 Ma, which promoted moderate subsidence rates and high rates of sediment supply into the basin. This allowed the development of aggradational braided rivers and widespread channel amalgamation resulting in poor preservation of both, low energy facies and geomorphic elements. The presence of poorly preserved Alfisols within the scarce flood plains and the absence of swamp deposits suggest arid climate during this stage. The compositional modes of sandstones suggest sediment supply from uplifted basement-cored blocks. The second stage of evolution was related to the late Oligocene eastward migration of the Pre-Andean tholeitic magmatic arc from the Western Cordillera towards the Cauca depression. This generated extensional movements along the Amagá Basin, enhancing the subsidence and increasing the accommodation space along the basin. As a result of the enhanced subsidence rates, meandering rivers developed, allowing the formation of extensive swamps deposits (currently coal beds). The excellent preservation of Entisols and Alfisols within the flood plain deposits suggests rapid channels migration and a humid climate during deposition. Moderate to highly mature channel sandstones support this contention, and point out the Central Cordillera of Colombia as the main source of sediment. Enhanced subsidence during this stage also prevented channels amalgamation and promoted both, high preservation of geomorphic elements and high diversity of sedimentary facies. This resulted in the most symmetric stratigraphic cycles of the entire Amagá Formation. The final stage of evolution of the Amagá Basin was related to the early stage of development of the late Miocene northwestern Andes tholeitic volcanism (from 10 to 8 Ma). The extensive thrusting and folding associated to this volcanism reduced the subsidence rates along the basin and thus the accommodation space. This permitted the development of highly aggradational braided rivers and promoted channels amalgamation. Little preservation of low energy facies, poor preservation of the geomorphic elements and a complete obliteration of important swamp deposits (coal beds) within the basin are reflected by the most asymmetric stratigraphic cycles of the whole formation. The presence of greenish/reddish flood plain deposits and Alfisols suggests a dry climate during this depositional stage. The presence of channel sandstones with high contents of volcanic rock fragments supports a dry climate, and suggests an incipient phase of the Combia tholeiitic magmatism present during deposition of the Amagá Formation. The subsequent eastward migration of the NW Andes magmatic arc (after 8 Ma) may have produced basin inversion and suppressed deposition along the Amagá Basin.  相似文献   

16.
Jean-Philippe Bellot   《Tectonophysics》2008,449(1-4):133-144
The role of fluids in the deformation of continental serpentinites is investigated from structural, microstructural and petrographic analyses applied to a km-scale porphyroclast mantled in a viscous matrix of amphibolites. The clast is sited within a shear zone of the Palaeozoic Maures massif, France. Syntectonic fluid–rock interactions occurred from km to mm scales, at first on the clast borders (along the main rheological boundaries) then within the clast. They are accommodated macroscopically by slickenfibers faults and microscopically by shear microcracks within crack-seal veins, typifying an intermediate, brittle–ductile behaviour of serpentinites. Three main stages of deformation–serpentinisation processes occurred in relation with the left-lateral movement of the hosted shear zone. They developed under metamorphic conditions evolving from amphibolites to green-schists facies conditions ( 400 MPa/550 °C to  200 MPa/< 300 °C), as inferred from the surrounding sheared amphibolites. Deformation and serpentinisation increase through time although fluid pressure decreases. If the shape of the inclusion and its orientation relative to the shear zone mainly controlled the deformation pattern though time (P then R' shears), fluid pressure is required for starting deformation–serpentinisation processes along inherited anisotropy planes. Whatever the origin of fluids, they play a key role all along the deformation processes by influencing stress states within the shear zone at the onset of deformation and by changing at various scales and through time behaviour of the rock, depending of the intensity of serpentinisation and the rate of deformation.  相似文献   

17.
祁连山老虎沟12号冰川冰下形态特征分析   总被引:4,自引:1,他引:3  
武震  刘时银  张世强 《地球科学进展》2009,24(10):1149-1158
利用探地雷达对老虎沟12号冰川进行了多个剖面观测,分析了雷达图像反映的冰川内部特征.结果表明通过分析雷达图像中的纹理和位置,雷达波形的振幅和极性变化等信息能够有效的辅助识别冰川内部介质的变化界面位置和估算其规模.在老虎沟12号冰川的部分剖面内部存在冰内空洞、冰内融水空洞、冰下裂隙、冰下河等地貌形态,在冰岩界面和冰川边缘存在规模不等的碎屑层.这说明即使在典型的大陆型冰川,冰川内部结构也可能较为复杂,在冰岩界面处可能存在较强的冰川作用.  相似文献   

18.
Quaternary glacial history of the Central Karakoram   总被引:3,自引:0,他引:3  
The Quaternary glacial history of the world's highest mountains, the Central Karakoram, is examined for the first time using geomorphic mapping of landforms and sediments, and 10Be terrestrial cosmogenic nuclide surface exposure dating of boulders on the moraines and glacially eroded surfaces. Four glacial stages are defined: the Bunthang glacial stage (>0.7 Ma); the Skardu glacial stage (marine Oxygen Isotope Stage [MIS] 6 or older); the Mungo glacial stage (MIS 2); and the Askole glacial stage (Holocene). Glaciers advanced several times during each glacial stage. These advances are not well defined for the oldest glacial stages, but during the Mungo and Askole glacial stages glacial advances likely occurred at 16, 11–13, 5 and 0.8 ka. The extent of glaciation in this region became increasingly more restricted over time. In the Braldu and Shigar valleys, glaciers advanced >150 km during the Bunthang and Skardu glacial stages, while glaciers advanced >80 km beyond their present positions during the Mungo glacial stage. In contrast, glaciers advanced a few kilometers from present ice margins during the Askole glacial stage. Glacier in this region likely respond in a complex fashion to the same forcing that causes changes in Northern Hemisphere oceans and ice sheets, teleconnected via the mid-latitude westerlies, and also to changes in monsoonal intensity.  相似文献   

19.
The Mengyin komatiites are located at the base of the Taishan Complex ( 2.7 Ga), in the western Shandong greenstone belt of the eastern block of North China craton. The Mengyin komatiites have high-magnesian, low-titanium, and aluminum-undepleted chemical characteristics. Although the ultramafic rocks underwent amphibolite to greenschist facies metamorphism, they preserve remnant igneous spinifex textures. Some komatiite samples even preserve rare fresh olivine. According to the mass equilibrium between the olivine and melt, the potential eruption temperature of the Mengyin komatiites at 1 atm is about 1270 °C which might indicate a plume tectonic setting. It is inferred that komatiites in Mengyin, west Shandong may be part of a plume-related global magmatic event related to the break-up of a supercontinent that included the eastern block of the North China craton.  相似文献   

20.
A 61-m-long sediment core (HB-1) and 690 km of high-resolution seismic profiles from offshore of the Yellow River delta, Bohai Sea, were analyzed to document the stratigraphy and sea-level changes during the Late Pleistocene and Holocene. Accelerator mass spectrometry 14C dating and analyses of benthic foraminifera, ostracods, the mineral composition, and sedimentary characteristics were performed for core HB-1, and seven depositional units (DU 1–DU 7 in descending order) were identified. The seismic reflection data were interpreted in light of the sedimentological data of the core and correlated with other well-studied cores obtained previously in the Bohai Sea area. Seven seismic units (SU 1 to SU 7 in descending order) were distinguished and interpreted as follows: SU 7 corresponds to marine facies in Marine Isotopic Stage (MIS) 5; SU 6, to terrestrial facies in MIS 4; SU 5 and SU 4, to alternating terrestrial and marine facies (DU 7–DU 5) in MIS 3; SU 3, to terrestrial facies (DU 4) in MIS 2; SU 2, to Holocene marine facies (DU 3 and DU 2); and SU 1, to modern Yellow River delta sediments deposited since 1855 (DU 1).The sedimentary facies from DU 7 to DU 5 reflect sea-level fluctuations during MIS 3, and the boundary between DU 5 and DU 6, which coincides with that between SU 4 and SU 5, is a distinctive, laterally continuous, undulating erosion surface, with up to 20 m of relief. This surface reflects subaerial exposure between transgressions during MIS 3. Estimated sea levels during MIS 3 ranged from −35 ± 5 to −60 ± 5 m or lower, with short-term fluctuations of 20 m. Sedimentary environments in the Bohai Sea area were governed mainly by eustatic sea-level changes and the Bohai Strait topography, which controls the entry of sea water into the Bohai Sea area.The mineral composition of the sediment core suggests that the Yellow River did not discharge into the Bohai Sea, or at least did not influence the study area significantly, during parts of MIS 3 and MIS 2 to the early Holocene (11–8.5 cal kyr BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号