首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The ketolides are a new class of macrolides specifically designed to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A. There are currently two ketolides in the late stages of clinical development in the US (telithromycin [HMR-364, Kelek; Aventis] and ABT-773 [Abbot Laboratories]), as well as newer compounds in earlier stages of testing. Ketolides have a mechanism of action very similar to that of erythromycin A. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive and some Gram-negative aerobes and have are active against macrolide-resistant Streptococcus species, including most mef A and erm B strains of Streptococcus pneumoniae. Ketolides have pharmacokinetics which allow once-daily dosing and extensive tissue distribution with very high uptake into respiratory tissues and fluids relative to serum. Evidence suggests the ketolides are primarily metabolised by the cytochrome P450 (CYP) enzyme system in the liver and that elimination is a combination of biliary, hepatic and urinary excretion. Clinical trial data are only available for telithromycin and have focused on respiratory tract infections (RTIs) including community-acquired pneumonia (CAP), acute exacerbations of chronic bronchitis (AECB), sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Ketolides have similar safety profiles to the newer macrolides. In summary, early clinical trials support the clinical efficacy of the ketolides in common RTIs, including activity against macrolide-resistant pathogens.  相似文献   

2.
The ketolides are a new class of macrolides specifically designed to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A. There are currently two ketolides in the late stages of clinical development in the US (telithromycin [HMR-364®, Kelek®; Aventis] and ABT-773 [Abbot Laboratories]), as well as newer compounds in earlier stages of testing. Ketolides have a mechanism of action very similar to that of erythromycin A. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive and some Gram-negative aerobes and have are active against macrolide-resistant Streptococcus species, including most mefA and ermB strains of Streptococcus pneumoniae. Ketolides have pharmacokinetics which allow once-daily dosing and extensive tissue distribution with very high uptake into respiratory tissues and fluids relative to serum. Evidence suggests the ketolides are primarily metabolised by the cytochrome P450 (CYP) enzyme system in the liver and that elimination is a combination of biliary, hepatic and urinary excretion. Clinical trial data are only available for telithromycin and have focused on respiratory tract infections (RTIs) including community-acquired pneumonia (CAP), acute exacerbations of chronic bronchitis (AECB), sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Ketolides have similar safety profiles to the newer macrolides. In summary, early clinical trials support the clinical efficacy of the ketolides in common RTIs, including activity against macrolide-resistant pathogens.  相似文献   

3.
Telithromycin (Ketek, Aventis) is a semisynthetic antibacterial agent belonging to a class of drugs called ketolides, which are a variation on the existing class of antibiotics known as macrolides (e.g., erythromycin), whose structure includes a 14-molecule ring. The FDA approved telithromycin for use as a treatment for upper respiratory tract infections in April of 2004. Its primary use is to treat community-acquired pneumonia and sinusitis. Telithromycin fulfills a role that has arisen due to the rise of microbial resistance to existing macrolides and appears to be effective against macrolide-resistant Streptococcus pneumoniae. The defining differentiating characteristic of the ketolides as opposed to other macrolides is the removal of the neutral sugar, L-cladinose from the 3 position of the macrolide ring and the subsequent oxidation of the 3-hydroxyl to a 3-keto functional group. Telithromycin seems to be an effective antibiotic in the treatment of a variety of skin infections, although double-blind trials have not proven this and currently no indication for treatment of skin infection is being sought from the FDA. Telithromycin also has excellent penetration into the female genial tract and could be useful for treating infections in this area.  相似文献   

4.
The ketolides: a critical review   总被引:15,自引:0,他引:15  
Ketolides are a new class of macrolides designed particularly to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides are semi-synthetic derivatives of the 14-membered macrolide erythromycin A, and retain the erythromycin macrolactone ring structure as well as the D-desosamine sugar attached at position 5. The defining characteristic of the ketolides is the removal of the neutral sugar, L-cladinose from the 3 position of the ring and the subsequent oxidation of the 3-hydroxyl to a 3-keto functional group. The ketolides presently under development additionally contain an 11, 12 cyclic carbamate linkage in place of the two hydroxyl groups of erythromycin A and an arylalkyl or an arylallyl chain, imparting in vitro activity equal to or better than the newer macrolides. Telithromycin is the first member of this new class to be approved for clinical use, while ABT-773 is presently in phase III of development. Ketolides have a mechanism of action very similar to erythromycin A from which they have been derived. They potently inhibit protein synthesis by interacting close to the peptidyl transferase site of the bacterial 50S ribosomal subunit. Ketolides bind to ribosomes with higher affinity than macrolides. The ketolides exhibit good activity against Gram-positive aerobes and some Gram-negative aerobes, and have excellent activity against drug-resistant Streptococcus pneumoniae, including macrolide-resistant (mefA and ermB strains of S. pneumoniae). Ketolides such as telithromycin display excellent pharmacokinetics allowing once daily dose administration and extensive tissue distribution relative to serum. Evidence suggests the ketolides are primarily metabolised in the liver and that elimination is by a combination of biliary, hepatic and urinary excretion. Pharmacodynamically, ketolides display an element of concentration dependent killing unlike macrolides which are considered time dependent killers. Clinical trial data are only available for telithromycin and have focused on respiratory infections including community-acquired pneumonia, acute exacerbations of chronic bronchitis, sinusitis and streptococcal pharyngitis. Bacteriological and clinical cure rates have been similar to comparators. Limited data suggest very good eradication of macrolide-resistant and penicillin-resistant S. pneumoniae. As a class, the macrolides are well tolerated and can be used safely. Limited clinical trial data suggest that ketolides have similar safety profiles to the newer macrolides. Telithromycin interacts with the cytochrome P450 enzyme system (specifically CYP 3A4) in a reversible fashion and limited clinically significant drug interactions occur. In summary, clinical trials support the clinical efficacy of the ketolides in upper and lower respiratory tract infections caused by typical and atypical pathogens including strains resistant to penicillins and macrolides. Considerations such as local epidemiology, patterns of resistance and ketolide adverse effects, drug interactions and cost relative to existing agents will define the role of these agents. The addition of the ketolides in the era of antibacterial resistance provides clinicians with more options in the treatment of respiratory infections.  相似文献   

5.
A novel series of C12 vinyl erythromycin derivatives have been discovered which exhibit in vitro and in vivo potency against key respiratory pathogens. The C12 modification involves replacing the natural C12 methyl group in the erythromycin core with a vinyl group via chemical synthesis. From the C12 vinyl macrolide core, a series of C12 vinyl ketolides was prepared. Several compounds were found to be potent against macrolide-sensitive and -resistant bacteria. The C12 vinyl ketolides 6j and 6k showed a similar antimicrobial spectrum and comparable activity to the commercial ketolide telithromycin. However, the pharmacokinetic profiles of C12 vinyl ketolides 6j and 6k in rats differ from that of telithromycin by having higher lung-to-plasma ratios, larger volumes of distribution, and longer half-lives. These pharmacokinetic differences have a pharmacodynamic effect as both 6j and 6k exhibited better in vivo efficacy than telithromycin in rat lung infection models against Streptococcus pneumoniae and Haemophilus influenzae.  相似文献   

6.
The bacterial ribosome is a target for a variety of drug classes including macrolides. Macrolide antibiotics are primarily used for the treatment of respiratory tract infections. One of the most important features of the macrolide class is the excellent safety profile allowing the drug to be used broadly across all age groups. The emergence of macrolide resistance, especially in S. pneumoniae, threatens the long-term usefulness of macrolide antibiotics. The newly developed ketolide class, including telithromycin and ABT-773, evolved from the macrolide class and displays significant improvements over macrolides while maintaining safety profiles similar to macrolides. The key improvement in antimicrobial spectrum is the in vitro potency against macrolide resistant pathogens, especially S. pneumoniae. This review outlines the key improvements of ketolides over macrolides in terms of in vitro microbiology, as well as the pharmacokinetic and pharmacodynamic profiles and updates the current understanding of drug-ribosome interactions. The application of cutting-edge technology such as ribosome structure-based rational drug design and genetic engineering are also briefly discussed.  相似文献   

7.
Telithromycin is the first ketolide, which is a new class of antibacterial agents related to the macrolides that have structural modifications permitting dual binding to bacterial ribosomal RNA so that activity is retained against Streptococcus pneumoniae with macrolide-lincosamide-streptogramin(B) resistance. Clinical experience in infectious patients has shown that oral telithromycin 800mg once daily for 5-10 days is effective for the treatment of community-acquired upper and lower respiratory tract infections. Absorption of telithromycin in humans is estimated to be > or = 90%. Prior to entering the systemic circulation, telithromycin undergoes first-pass metabolism (mainly by the liver). Its absolute bioavailability is 57% and is unaffected by food. The volume of distribution of telithromycin after intravenous infusion is 2.9 L/kg. Telithromycin is 60-70% bound to serum proteins and has extensive diffusion into a range of target biological tissues, achieving concentrations above its minimum inhibitory concentration (MIC) against key respiratory pathogens throughout the dosing interval. After entering the systemic circulation, telithromycin is eliminated by multiple pathways (7% by biliary and/or intestinal excretion, 13% by renal excretion and 37% by hepatic metabolism). Telithromycin is metabolised via cytochrome P450 (CYP) 3A4 and non-CYP pathways. The identified metabolites show minimal antibacterial activity compared with the parent drug. In healthy subjects receiving telithromycin 800 mg once daily, the peak plasma concentration achieved is 2.27 microg/mL. Plasma concentrations of telithromycin show a biphasic decrease over time, with an initial disposition half-life of 2.9 hours and a terminal elimination half-life of approximately 10 hours after multiple dose administration. Steady-state plasma concentrations are achieved within 2-3 days of once-daily administration. Owing to elimination by multiple pathways there is a small increase in exposure when one of these elimination pathways is impaired, as indicated by the results of studies in special patient populations (e.g. those with hepatic or renal impairment). Dosage reductions may be recommended in patients with severe renal impairment. Inhibition of CYP3A4 by potent inhibitors such as itraconazole and ketoconazole results in a 54% and 95% increase in telithromycin area under the plasma concentration-time curve, respectively. The potential for telithromycin to inhibit the CYP3A4 pathway is similar to that of clarithromycin. The once-daily administration of telithromycin is likely to limit the potential for drug interactions and clinically significant increases in exposure. In phase III clinical trials, the telithromycin 800 mg once-daily dose has been shown to provide close to the maximum antimicrobial activity against S. pneumoniae, Haemophilus influenzae and Staphylococcus aureus in patients with community-acquired pneumonia. In conclusion, telithromycin has a well characterised and reproducible pharmacokinetic profile, with pharmacokinetic/pharmacodynamic relationships supporting an oral dosage regimen of 800 mg once daily.  相似文献   

8.
Macrolides are important antibiotics used in treatment of respiratory tract infections in humans. Although some of these compounds have been in use for 50 years, it has not been until the last few years that their mechanism of action and the nature of ribosomal-based resistance could be more fully understood. With the advent of robust crystals of ribosomal 50S subunits, and structural resolution of macrolides and ketolides complexed to either Haloarcula marismortui or Deinococcus radiodurans 50S, the ability to dissect the binding modes and understand resistance at the level of the ribosome became possible. This review article compares the binding features of 14-, 15-, and 16-membered macrolides to that of ketolides telithromycin and ABT-773 as revealed at the atomistic level. Attempts to understand how modifications to 23S rRNA and/or mutations in ribosomal proteins L4 and L22 that have been found to confer resistance in Streptococcus pneumoniae, Streptococcus pyogenes, and Haemophilus influenzae are told from the perspective of the ribosome.  相似文献   

9.
Ketolides are erythromycin A derivatives with a keto group replacing the cladinose sugar and an aryl-alkyl group attached to the lactone macrocycle. The aryl-alkyl extension broadens its antibacterial spectrum to include all pathogens responsible for community-acquired pneumonia (CAP): Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis as well as atypical pathogens (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila). Ketolides have extensive tissue distribution, favorable pharmacokinetics (oral, once-a-day) and useful anti-inflammatory/immunomodulatory properties. Hence, they were considered attractive additions to established oral antibacterials (quinolones, β-lactams, second-generation macrolides) for mild-to-moderate CAP. The first ketolide to be approved, Sanofi-Aventis’ telithromycin (RU 66647, HMR 3647, Ketek®), had tainted clinical development, controversial FDA approval and subsequent restrictions due to rare, irreversible hepatotoxicity that included deaths. Three additional ketolides progressed to non-inferiority clinical trials vis-à-vis clarithromycin for CAP. Abbott’s cethromycin (ABT-773), acquired by Polymedix and subsequently by Advanced Life Sciences, completed Phase III trials, but its New Drug Application was denied by the FDA in 2009. Enanta’s modithromycin (EDP-420), originally codeveloped with Shionogi (S-013420) and subsequently by Shionogi alone, is currently in Phase II in Japan. Optimer’s solithromycin (OP-1068), acquired by Cempra (CEM-101), is currently in Phase III. Until this hepatotoxicity issue is resolved, ketolides are unlikely to replace established antibacterials for CAP, or lipoglycopeptides and oxazolidinones for gram-positive infections.  相似文献   

10.
Telithromycin is a new ketolide antimicrobial with a good in vitro activity against both aerobic and anaerobic respiratory pathogens. In this study, we evaluated the antibacterial activity over time of telithromycin (800mg), azithromycin (500mg), and amoxicillin/clavulanate (875/125mg) in serum following single oral doses of these agents to 10 healthy subjects. Inhibitory and bactericidal titers were determined at 2, 6, 12, and 24h after each dose and the median titer was used to determine antibacterial activity. Against two azithromycin-resistant strains of Streptococcus pneumoniae, both telithromycin (MIC=0.25 and 0.5 microg/mL) and amoxicillin/clavulanate exhibited inhibitory and cidal activity for at least 6h. All three antibiotics provided prolonged (>or=12h) inhibitory activity against strains of Hemophilus influenzae (telithromycin MIC=4.0 microg/ml). Both telithromycin and amoxicillin/clavulanate exhibited rapid and prolonged inhibitory activity (>or=12h) against each of the anaerobes studied (Finegoldia [Peptostreptococcus] magna Peptostreptococcus micros, Prevotella bivia, and Prevotella melaninogenica). Moreover, both agents provided bactericidal activity against both Prevotella species. In this ex vivo pharmacodynamic study, we found that telithromycin provided rapid and prolonged antibacterial activity in serum against macrolide-resistant strains of S. pneumoniae, beta-lactamase-positive and -negative strains of H. influenzae, and common respiratory anaerobic pathogens. These findings suggest that telithromycin could have clinical utility in the treatment of community-acquired mixed aerobic-anaerobic respiratory tract infections, including chronic sinusitis and aspiration pneumonia.  相似文献   

11.
PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) is a worldwide epidemiologic survey for investigating drug susceptibility against major bacterial pathogens in respiratory tract infections, and that is also designed to identify the action mechanism of telithromycin (TEL), a ketolide antibacterial agent, on the resistant Streptococcus pneumoniae and the resistance mechanism for TEL on the TEL-resistant S. pneumoniae strain, in addition to determine macrolide/ketolide resistant S. pneumoniae activities of TEL using molecular analysis. TEL exerted the antibacterial action on the macrolide-resistant S. pneumoniae regardless maintaining the macrolide-resistant mechanism and exhibited the potent antibacterial activity against all of ermB gene-positive strains, mefA gene-positive strains and ribosome variants. This result was considered to reflect the fact that TEL did not induce resistance to ermB and had extremely low ability to select resistant strain by mutation. These actions of TEL were considered to be derived from its novel chemical structure and might be characteristics of ketolides not possessed by macrolides. In the survey of PROTEKT in 1999 to 2002, among 13,864 strains of S. pneumoniae isolated worldwide, ketolide-resistant strain (TEL MIC > or = 4 microg/ml) was observed in 10 strains (0.07%). MIC of these 10 strains was 4 or 8 microg/mL and all of these strains were ermB-positive strains. Based on this fact, potential involvement of adenine demethylase (ermB gene product) was considered in the background of development of ketolide-resistant S. pneumoniae.  相似文献   

12.
In addition to bactericidal activity, macrolide antibacterials possess clinically relevant properties such as immunomodulatory activity. Whether such activity extends to novel antibacterials that are structurally related to macrolides, such as the ketolides, remains largely unknown. The objective of this study was to evaluate the in vivo immunomodulatory profile of the first ketolide antibacterial - telithromycin in a murine neutropenic thigh infection model. Specific pathogen-free, female ICR mice were rendered transiently neutropenic with intraperitoneal cyclophosphamide. Thighs were inoculated with 10(6) colony-forming units of a single clinical isolate of Streptococcus pneumoniae. Once inoculated, mice (n=500) received single oral doses of telithromycin (10, 25 or 50 mg/kg of body weight) or no treatment (control). Blood was obtained via cardiac puncture prior to and at 2, 4, 8, and 24 h after dose administration for determination of cytokine concentrations. Significant post-inoculation elevations of interleukin (IL)-1beta, IL-6, and IL-10 were noted in untreated controls over 24 h. Telithromycin attenuated these increases and the suppression of both IL-6 and IL-10 release was observed to be dose dependent. Systemic concentrations of IL-2 and tumor necrosis factor alpha showed an upward trend over the initial 8-h post-inoculation period in the telithromycin group. These data therefore reveal novel in vivo immunomodulatory effects of telithromycin. Further studies are warranted to determine whether such effects contribute to the therapeutic efficacy of the drug in patients with acute respiratory tract infections.  相似文献   

13.
Review of macrolides and ketolides: focus on respiratory tract infections   总被引:5,自引:0,他引:5  
The first macrolide, erythromycin A, demonstrated broad-spectrum antimicrobial activity and was used primarily for respiratory and skin and soft tissue infections. Newer 14-, 15- and 16-membered ring macrolides such as clarithromycin and the azalide, azithromycin, have been developed to address the limitations of erythromycin. The main structural component of the macrolides is a large lactone ring that varies in size from 12 to 16 atoms. A new group of 14-membered macrolides known as the ketolides have recently been developed which have a 3-keto in place of the L-cladinose moiety. Macrolides reversibly bind to the 23S rRNA and thus, inhibit protein synthesis by blocking elongation. The ketolides have also been reported to bind to 23S rRNA and their mechanism of action is similar to that of macrolides. Macrolide resistance mechanisms include target site alteration, alteration in antibiotic transport and modification of the antibiotic. The macrolides and ketolides exhibit good activity against gram-positive aerobes and some gram-negative aerobes. Ketolides have excellent activity versus macrolide-resistant Streptococcus spp. Including mefA and ermB producing Streptococcus pneumoniae. The newer macrolides, such as azithromycin and clarithromycin, and the ketolides exhibit greater activity against Haemophilus influenzae than erythromycin. The bioavailability of macrolides ranges from 25 to 85%, with corresponding serum concentrations ranging from 0.4 to 12 mg/L and area under the concentration-time curves from 3 to 115 mg/L x h. Half-lives range from short for erythromycin to medium for clarithromycin, roxithromycin and ketolides, to very long for dirithromycin and azithromycin. All of these agents display large volumes of distribution with excellent uptake into respiratory tissues and fluids relative to serum. The majority of the agents are hepatically metabolised and excretion in the urine is limited, with the exception of clarithromycin. Clinical trials involving the macrolides are available for various respiratory infections. In general, macrolides are the preferred treatment for community-acquired pneumonia and alternative treatment for other respiratory infections. These agents are frequently used in patients with penicillin allergies. The macrolides are well-tolerated agents. Macrolides are divided into 3 groups for likely occurrence of drug-drug interactions: group 1 (e.g. erythromycin) are frequently involved, group 2 (e.g. clarithromycin, roxithromycin) are less commonly involved, whereas drug interactions have not been described for group 3 (e.g. azithromycin, dirithromycin). Few pharmacoeconomic studies involving macrolides are presently available. The ketolides are being developed in an attempt to address the increasingly prevalent problems of macrolide-resistant and multiresistant organisms.  相似文献   

14.
Antibacterial resistance in Streptococcus pneumoniae is increasing worldwide, affecting principally beta-lactams and macrolides (prevalence ranging between approximately 1% and 90% depending on the geographical area). Fluoroquinolone resistance has also started to emerge in countries with high level of antibacterial resistance and consumption. Of more concern, 40% of pneumococci display multi-drug resistant phenotypes, again with highly variable prevalence among countries. Infections caused by resistant pneumococci can still be treated using first-line antibacterials (beta-lactams), provided the dosage is optimised to cover less susceptible strains. Macrolides can no longer be used as monotherapy, but are combined with beta-lactams to cover intracellular bacteria. Ketolides could be an alternative, but toxicity issues have recently restricted the use of telithromycin in the US. The so-called respiratory fluoroquinolones offer the advantages of easy administration and a spectrum covering extracellular and intracellular pathogens. However, their broad spectrum raises questions regarding the global risk of resistance selection and their safety profile is far from optimal for wide use in the community. For multi-drug resistant pneumococci, ketolides and fluoroquinolones could be considered. A large number of drugs with activity against these multi-drug resistant strains (cephalosporins, carbapenems, glycopeptides, lipopeptides, ketolides, lincosamides, oxazolidinones, glycylcyclines, quinolones, deformylase inhibitors) are currently in development. Most of them are only new derivatives in existing classes, with improved intrinsic activity or lower susceptibility to resistance mechanisms. Except for the new fluoroquinolones, these agents are also primarily targeted towards methicillin-resistant Staphylococcus aureus infections; therefore, demonstration of their clinical efficacy in the management of pneumococcal infections is still awaited.  相似文献   

15.
PURPOSE: The pharmacology, mechanisms of resistance, in vitro activity, clinical efficacy, pharmacokinetics, indications, adverse effects, dosage and administration, and place in therapy of telithromycin in the treatment of respiratory infections are reviewed. SUMMARY: Telithromycin is the first ketolide to be approved in the United States for use against common respiratory pathogens. The unique structure of telithromycin allows for enhanced binding to bacterial ribosomal RNA, thereby blocking protein synthesis. Its spectrum of activity includes pathogens implicated in common respiratory infections (Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Mycoplasma pneumonia, and Chlamydia pneumoniae) and multidrug-resistant isolates of pneumococcus. Clinical efficacy has been documented in several multicenter, comparative trials for the treatment of community-acquired pneumonia, acute exacerbation of chronic bronchitis, acute maxillary sinusitis, and pharyngitis tonsillitis. Although studies have demonstrated that the clinical efficacy of telithromycin is comparable to macrolides, telithromycin is unique in that it provides activity against penicillin- and macrolide-resistant respiratory pathogens. The recommended dosage of telithromycin is 800 mg p.o. once daily. The most common adverse events resulting from telithromycin use include diarrhea, nausea, headache, dizziness, vomiting, loose stools, dysgeusia, and dyspepsia. The drug's adverse-event profile is comparable to that of similar agents. Telithromycin is a strong inhibitor of cytochrome P-450 isoenzyme 3A4; therefore, it can affect the efficacy and toxicity profile of medications that are metabolized by this isoenzyme. CONCLUSION: Telithromycin is a reasonable addition to the current treatment options for upper-respiratory-tract infections. Its use should be restricted to infections caused by penicillin- and macrolide-resistant pathogens.  相似文献   

16.
新一代大环内酯类抗生素——酮内酯类简介   总被引:3,自引:0,他引:3  
大量耐药病原菌的迅速出现加速了寻找新抗生素的步伐,近年来研制出一种经结构修饰的大环内酯类衍生物,即酮内酯。酮内酯是把14元大环内酯C-3上的红霉糖基替换为羰基而得到的新一类抗生素。现综述大环内酯的获得性耐药机制,进而阐明以大环内酯为基础经结构改造而来的酮内酯类抗生素的构效关系,并介绍其代表性药物泰利霉素和喹红霉素(ABT-773)的临床特性。  相似文献   

17.
Resistance to antibiotics in community acquired respiratory infections is increasing worldwide. Resistance to the macrolides can be class-specific, as in efflux or ribosomal mutations, or, in the case of erythromycin ribosomal methylase (erm)-mediated resistance, may generate cross-resistance to other related classes. The ketolides are a new subclass of macrolides specifically designed to combat macrolide-resistant respiratory pathogens. X-ray crystallography indicates that ketolides bind to a secondary region in domain II of the 23S rRNA subunit, resulting in an improved structure–activity relationship. Telithromycin and cethromycin (formerly ABT-773) are the two most clinically advanced ketolides, exhibiting greater activity towards both typical and atypical respiratory pathogens. As a subclass of macrolides, ketolides demonstrate potent activity against most macrolide-resistant streptococci, including ermB- and macrolide efflux (mef)A-positive Streptococcus pneumoniae. Their pharmacokinetics display a long half-life as well as extensive tissue distribution and uptake into respiratory tissues and fluids, allowing for once-daily dosing. Clinical trials focusing on respiratory infections indicate bacteriological and clinical cure rates similar to comparators, even in patients infected with macrolide-resistant strains.  相似文献   

18.
Elderly patients are at increased risk of developing lower respiratory tract infections compared with younger patients. In this population, pneumonia is a serious illness with high rates of hospitalisation and mortality, especially in patients requiring admission to intensive care units (ICUs). A wide range of pathogens may be involved depending on different settings of acquisition and patient's health status. Streptococcus pneumoniae is the most common bacterial isolate in community-acquired pneumonia, followed by Haemophilus influenzae, Moraxella catarrhalis and atypical pathogens such as Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae. However, elderly patients with comorbid illness, who have been recently hospitalised or are residing in a nursing home, may develop severe pneumonia caused by multidrug resistant staphylococci or pneumococci, and enteric Gram-negative bacilli, including Pseudomonas aeruginosa. Moreover, anaerobes may be involved in aspiration pneumonia. Timely and appropriate empiric treatment is required in order to enhance the likelihood of a good clinical outcome, prevent the spread of antibacterial resistance and reduce the economic impact of pneumonia. International guidelines recommend that elderly outpatients and inpatients (not in ICU) should be treated for the most common bacterial pathogens and the possibility of atypical pathogens. The algorithm for therapy is to use either a selected beta-lactam combined with a macrolide (azithromycin or clarithromycin), or to use monotherapy with a new anti-pneumococcal quinolone, such as levofloxacin, gatifloxacin or moxifloxacin. Oral (amoxicillin, amoxicillin/clavulanic acid, cefuroxime axetil) and intravenous (sulbactam/ampicillin, ceftriaxone, cefotaxime) beta-lactams are agents of choice in outpatients and inpatients, respectively. For patients with severe pneumonia or aspiration pneumonia, the specific algorithm is to use either a macrolide or a quinolone in combination with other agents; the nature and the number of which depends on the presence of risk factors for specific pathogens. Despite these recommendations, clinical resolution of pneumonia in the elderly is often delayed with respect to younger patients, suggesting that optimisation of antibacterial therapy is needed. Recently, some new classes of antibacterials, such as ketolides, oxazolidinones and streptogramins, have been developed for the treatment of multidrug resistant Gram-positive infections. However, the efficacy and safety of these agents in the elderly is yet to be clarified. Treatment guidelines should be modified on the basis of local bacteriology and resistance patterns, while dosage and/or administration route of each antibacterial should be optimised on the basis of new insights on pharmacokinetic/pharmacodynamic parameters and drug interactions. These strategies should be able to reduce the occurrence of risk factors for a poor clinical outcome, hospitalisation and death.  相似文献   

19.
Resistance to antibiotics in community acquired respiratory infections is increasing worldwide. Resistance to the macrolides can be class-specific, as in efflux or ribosomal mutations, or, in the case of erythromycin ribosomal methylase (erm)-mediated resistance, may generate cross-resistance to other related classes. The ketolides are a new subclass of macrolides specifically designed to combat macrolide-resistant respiratory pathogens. X-ray crystallography indicates that ketolides bind to a secondary region in domain II of the 23S rRNA subunit, resulting in an improved structure-activity relationship. Telithromycin and cethromycin (formerly ABT-773) are the two most clinically advanced ketolides, exhibiting greater activity towards both typical and atypical respiratory pathogens. As a subclass of macrolides, ketolides demonstrate potent activity against most macrolide-resistant streptococci, including ermB- and macrolide efflux (mef)A-positive Streptococcus pneumoniae. Their pharmacokinetics display a long half-life as well as extensive tissue distribution and uptake into respiratory tissues and fluids, allowing for once-daily dosing. Clinical trials focusing on respiratory infections indicate bacteriological and clinical cure rates similar to comparators, even in patients infected with macrolide-resistant strains.  相似文献   

20.
BACKGROUND AND OBJECTIVE: Telithromycin, a ketolide antibacterial, demonstrates concentration-dependent bactericidal activity against the major pathogens causing community-acquired respiratory tract infections. The objective of this study was to explore the relationships between pharmacokinetic/pharmacodynamic predictor variables, such as area under the plasma concentration-time curve (AUC) over minimum inhibitory concentration (MIC) [AUC/MIC], maximum plasma concentration (C(max)) over MIC (C(max)/MIC) and microbiological outcome from telithromycin therapy for community-acquired pneumonia (CAP). PATIENTS AND METHODS: Data were pooled from five phase III studies of oral telithromycin (800 mg once daily for 7-10 days) for the outpatient treatment of adults with CAP. Only subjects with a single pathogen isolated at baseline, a telithromycin MIC determination and at least one plasma pharmacokinetic sample were included. Bacteriologically modified intent-to-treat (bmITT) and bacteriologically evaluable per protocol (PPb) populations were analysed. Individual AUC and C(max) Bayesian estimates were obtained with a population pharmacokinetic model. Logistic regression, nonparametric smoothing, and classification analysis and regression tree (CART) were used to assess the relationship between AUC/MIC and C(max)/MIC and microbiological outcome by pathogen. RESULTS: The bmITT population included 224 patients (Streptococcus pneumoniae in 113, Haemophilus influenzae in 89 and Staphylococcus aureus in 22). Median telithromycin MIC was 0.015 microg/mL for S. pneumoniae, 2.0 microg/mL for H. influenzae and 0.12 microg/mL for S. aureus, with median AUC/MIC of 907.1, 6.9 and 98.4, and median C(max)/MIC of 172.0, 1.3 and 20.4 for the three pathogens, respectively. Both logistic regression and nonparametric smoothing showed the probability of microbiological cure to be consistently greater than 90% over the observed range of predictor variables. No reliable AUC/MIC or C(max)/MIC breakpoints were identified by CART. CONCLUSION: Telithromycin exhibits near-maximal efficacy against three major pathogens causing CAP at a dose of 800 mg once daily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号