首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
现已证明,在肿瘤发生过程中,司职抗原呈递的树突状细胞的功能存在缺陷和紊乱,从而导致了免疫系统的显著受抑和肿瘤的免疫逃逸.为了探索肿瘤的免疫逃逸机制,利用生物物理学和微观流变学的方法研究了肿瘤来源因素对树突状细胞(dendriticcells,DCs)分化过程的影响.发现来源于肿瘤微环境的细胞因子等成分,导致DCs的渗透脆性增加、细胞膜脂流动性显著下降,而且细胞的转录水平和能量状态也明显改变,导致DCs的抗原摄取能力和活化幼稚T细胞的能力显著下降.所以,DCs的微观流变特性的改变也许是肿瘤免疫逃逸机制的一个方面.  相似文献   

2.
周琨  ;高晓唯 《生物磁学》2014,(18):3570-3574
树突状细胞(dendritic cells,DCs)是体内已知的功能最强大的专职抗原提呈细胞,对于诱导机体初始免疫应答尤为重要。趋化受体因子7(chemokine receptor 7,CCR7)是一个已知的调节各类免疫细胞向初级、次级淋巴细胞分化,并向外周淋巴器官归巢的趋化因子受体,其具有自我平衡表达能力,在趋化DCs从外周组织迁移至次级淋巴器官中起关键作用。随着研究的深入,除了CCR7最主要的趋化作用外,更多的功能逐渐被了解。目前,DCs和CCR7的相关功能已被应用于诱导角膜移植后的免疫耐受等眼科领域。就CCR7在DCs中的功能及其对角膜免疫调节的影响进行综述,探讨其关键作用及可能的治疗靶点。  相似文献   

3.
树突状细胞(dendritic cells, DCs)是体内已知的功能最强大的专职抗原提呈细胞,对于诱导机体初始免疫应答尤为重要。趋 化受体因子7 (chemokine receptor 7,CCR7)是一个已知的调节各类免疫细胞向初级、次级淋巴细胞分化,并向外周淋巴器官归巢 的趋化因子受体,其具有自我平衡表达能力,在趋化DCs 从外周组织迁移至次级淋巴器官中起关键作用。随着研究的深入,除了 CCR7 最主要的趋化作用外,更多的功能逐渐被了解。目前,DCs 和CCR7 的相关功能已被应用于诱导角膜移植后的免疫耐受等 眼科领域。就CCR7 在DCs中的功能及其对角膜免疫调节的影响进行综述,探讨其关键作用及可能的治疗靶点。  相似文献   

4.
树突状细胞(dendritic cells, DCs)是功能最强的专职抗原呈递细胞。DCs能够摄取和呈递抗原表达共刺激分子,并迁移到淋巴器官激活T细胞,进而启动免疫反应。在肿瘤发展过程中,DCs不仅能诱导抗肿瘤免疫反应,还可以诱导免疫耐受。现对树突状细胞的生物学特性、树突状细胞与肿瘤免疫系统的相互作用等方面的最新研究进展进行综述,并介绍免疫治疗中基于树突状细胞疫苗的多种治疗方法。相关研究对于更好地理解肿瘤微环境中树突状细胞在肿瘤演化中的作用、寻找新的治疗策略以及改进治疗方法至关重要。  相似文献   

5.
树突状细胞(DC)是人体内最强的抗原提呈细胞。未成熟的DC可摄取抗原并迁移至淋巴器官,将抗原信息传递给免疫系统,引发免疫应答。研究表明,DC在启动抗肿瘤免疫中发挥着强大的功能。近年来,以DC为基础的肿瘤疫苗已成为肿瘤免疫治疗的热点。简要综述了各种DC疫苗的制备和临床应用。  相似文献   

6.
近年来,随着广谱抗生素、抗肿瘤药物和免疫抑制剂等药物的广泛使用,免疫功能降低患者数量的增加,侵袭性真菌感染性疾病的发病率逐年升高。树突状细胞(Dendritic Cells,DCs)是已知功能最强的专职抗原提呈细胞,作为宿主固有免疫和适应性免疫的联系枢纽,DCs在病原微生物抗原的识别与呈递过程中发挥核心作用。研究证明,DCs可通过其细胞表面的多种受体有效识别病原真菌的抗原,并在诱导宿主免疫应答过程中发挥重要作用。本文将对树突状细胞分类及其在抗真菌感染免疫中的识别作用进行系统叙述。  相似文献   

7.
树突细胞(dendritic cells,DCs)通过将抗原提呈给初始T淋巴细胞(native T lymphocyte),从而诱导CD8~+细胞毒性T细胞(cytotoxic T cell,CTL)和CD4~+效应T细胞的分化并启动获得性免疫应答。此外DCs在诱导并维持免疫耐受方面也具有重要作用。现就DCs的免疫耐受机制及其在I型糖尿病(type 1 diabetes mellitus,T1DM)中的作用的研究进展作一综述,为T1DM等自身免疫性疾病及移植免疫疾病的细胞免疫治疗提供新思路。  相似文献   

8.
树突状细胞免疫调节作用及其信号转导机制   总被引:2,自引:0,他引:2  
Xu S  Yao YM  Sheng ZY 《生理科学进展》2006,37(4):313-318
树突状细胞(DC)是最强效的抗原提呈细胞。,在抗原的刺激下,DC通过趋化因子作用由外周组织迁移至淋巴组织和器官,同时上调主要组织相容性复合体分子、共刺激分子和黏附分子的表达,分泌细胞因子,获得预激幼稚T细胞的独特能力。DC通过不同的受体吞饮、吞噬和胞吞抗原,例如C型凝集素受体捕获和呈递抗原,通过Toll样受体识别病原体和激活DC。本文主要综述了DC的免疫调节效应及其不同病原体识别受体活化和细胞内信号机制。  相似文献   

9.
树突状细胞与肠道免疫   总被引:1,自引:0,他引:1  
肠道黏膜免疫系统是肠道防御细菌和病毒感染的第一道防线,在维持肠道黏膜自稳方面发挥着重要的作用。肠道黏膜免疫系统持续不断的与来自外界的食物抗原和病原微生物及自身长期共存的肠道菌群相互作用,刺激机体对有害抗原产生免疫应答反应,诱导机体对无害抗原产生免疫耐受。树突状细胞(Dendritic cells,DCs)是目前已知的最强有力的一种专职抗原递呈细胞(Professional antigen presenting cells,APC),  相似文献   

10.
利用野生型p53质粒转染黑色素瘤B16细胞,反复冻融法提取p53修饰的肿瘤抗原(p53-Ag),将抗原体外冲击同基因小鼠骨髓来源的树突状细胞(dendritic cells,DC)制备特异性DC肿瘤疫苗;观察DC诱导的淋巴细胞增殖反应和细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTL)对黑色素瘤细胞的细胞毒效应,分析其诱导肿瘤抗原特异性免疫应答的机制。结果显示,p53-肿瘤抗原冲击的DC可显著刺激淋巴细胞增殖,其诱导的CTL效应对肿瘤细胞也有很好的杀伤效果。  相似文献   

11.
Dendritic cells (DCs), which are the most efficient antigen-presenting cells (APCs) currently known, can be derived from CD14+ monocytes (DC predecessor cells) in vitro. Immature DCs actively take up antigens and pathogens, generate major histocompatability complex-peptide complexes, and migrate from the sites of antigen acquisition to secondary lymphoid organs to become mature dendritic cells that interact with and stimulate T-lymphocytes. During this process, the cells must undergo deformation to translocate through several barriers, including the basement membrane and interstitial connective tissue in the blood vessel wall. To further understand the mechanisms of the activation of immunological responses and the migration from peripheral tissue to secondary lymphoid organs, we have applied biophysical and microrheological methods to study the development processes of DCs in vitro. The results showed that membrane fluidity, osmotic fragility, membrane viscoelastic properties, infrared spectroscopy, and cytoskeleton organization of DCs exhibit significant differences in different developmental stages. These authors contributed equally to this work.  相似文献   

12.
Bone marrow‐derived mesenchymal stem cell (BMSC)‐derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post‐renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC‐derived sEVs mitigate acute rejection post‐renal allograft by targeting DCs is still unclear. In this study, donor BMSC‐derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)‐stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll‐like receptor 4 (TLR4) signaling. Compared with LPS‐treated imDCs, imDCs treated with LPS+sEVs promoted CD4+T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non‐coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post‐renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.  相似文献   

13.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8(+) T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8(+) T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.  相似文献   

14.
In vitro proliferation and functional activation of V alpha 24NKT cells following stimulation with alpha-galactosylceramide (alpha-GalCer)-pulsed dendritic cells (DCs) have been observed. Because little is known about the molecular events on DCs following interaction with alpha-GalCer, we performed gene expression profiling of 2400 genes in monocytes and monocyte-derived immature DCs pulsed with alpha-GalCer (alpha-GalCer-imDCs). Overall, the expression levels of 48 genes were up-regulated and 28 were down-regulated in alpha-GalCer-imDCs. Semiquantitative RT-PCR analysis on monocytes, imDCs, alpha-GalCer-imDCs, and mature DCs confirmed the up- and down-regulation of the mRNA expression levels of 28 selected genes. Notably, we identified the specific up-regulation of mRNA expression levels of ribonuclease A and collapsin response mediator protein upon the stimulation of imDC with alpha-GalCer, suggesting a novel immunomodulating effect of alpha-GalCer on imDCs. In this study, we used imDCs prepared by culturing of monocytes with GM-CSF and IL-4 for 5 days and mDCs prepared by further culturing of imDCs with TNF alpha for two extra days.  相似文献   

15.
Migration of mature dendritic cells (mDCs) to secondary lymphoid organs is required for the development of immunity. Recently, we reported that polysialic acid (PSA) and the transmembrane glycoprotein neuropilin-2 (NRP2) control mDC chemotaxis to CCL21 and that this process is dependent on the C-terminal basic region of the chemokine. Herein, we provide further insight into the molecular components controlling PSA regulated chemotaxis in mDCs. In the present study, we demonstrate that human mDCs express the NRP2 isoforms NRP2a and NRP2b, that both of them are susceptible to polysialylation and that polysialylation is required to specifically enhance chemotaxis toward CCL21 in mDCs. The results presented suggest that PSA attached to NRP2 isoforms acts as a binding module for the CCL21 chemokine, thereby facilitating its presentation to the chemokine receptor CCR7. To investigate the relevance of polysialylation on mDC migration, a xenograft mouse model was used and the migration of human DCs to mouse lymph nodes analyzed. Here, we demonstrate that the depletion of PSA from mDCs results in a drastic reduction in the migration of the cells to draining popliteal lymph nodes. With this finding, we provide first evidence that PSA is a crucial factor for in vivo migration of mDCs to lymph nodes.  相似文献   

16.
T cells encounter their cognate antigens in specialized compartments of secondary lymphoid organs (SLOs). There, dendritic cells (DCs) present self and non-self antigens to T cells, and promote immunity or tolerance depending on the availability of danger signals. Resident stromal cells orchestrate the interaction between T cells and DCs by recruiting them to T cell zones and guiding their migration within SLOs. Recent studies have shown that SLO-resident stromal cells also have a crucial role in tolerance induction in the periphery. In this Review, we discuss the roles of SLO-resident DCs and stromal cells in shaping T cell responses.  相似文献   

17.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

18.
骨髓间充质干细胞(bone marrow mesenchymal stem cells,bMSCs)具有自我更新、支持造血、多向分化和低免疫原性等特点,在调控树突状细胞(dendritic cells,DCs)成熟的过程中发挥重要作用。为了探讨bMSCs调控DCs成熟的机制,本研究通过分离培养正常捐献者bMSCs,并分离获取外周静脉血单个核细胞,诱导未成熟的树突状细胞(immature dendritic cells,imDCs)和成熟的树突状细胞(mature dendritic cells,mDCs)生成。根据Genebank中人STAT3全长基因序列,设计针对STAT3的siRNA。根据培养条件不同设计实验分组:正常bMSCs与imDCs共培养(阴性对照组),转染siRNA的bMSCs与imDCs共培养(siRNA组)、加入JAK/STAT通路抑制剂AG490的bMSCs与imDCs共培养(AG490组)、加入TNF-α诱导的mDCs(阳性对照组)共4组,共培养72 h,流式细胞术分析DCs表型变化,ELISA检测培养液上清中IL-12水平变化。结果显示,阴性对照组不表达CD40、CD80、CD83、CD86和HLA DR标志树突细胞成熟的分子,而表达CD11b,其表型与imDCs一致;而siRNA组和AG490组的DCs表达CD40、CD80、CD83、CD86和HLA-DR等标志分子,而不表达CD11b,其表型与TNF-α诱导成熟的mDCs表型一致;siRNA组、AG490组和阳性对照组的IL-12水平较阴性对照组的IL-12水平显著升高(P<0.05),但siRNA组、AG490组和阳性对照组之间无明显差异(P>0.05)。以上结果表明,通过siRNA和抑制剂AG490阻断bMSCs中JAK/STAT3通路促进了imDCs的成熟,提示bMSCs通过JAK/STAT3通路参与调控imDCs成熟。  相似文献   

19.
Dendritic cells (DCs), which are potent antigen presenting cells (APCs), are utilized to deliver the signals essential for the initiation of immune responses. In this study, we used an interdisciplinary approach to characterize the effect of K562 cells, a human chronic myeloid leukemia (CML) cell line, on the biomechanical characteristics and immune functions of DCs. When co-cultured with K562 cells, the biomechanical and immunological characteristics of immature DCs (imDCs) and mature DCs (mDCs) were severely impaired compared with controls. The changes include increased membrane viscoelasticity, reorganized cytoskeleton (F-actin), suppressed capability of antigen uptake, transendothelium migration, and activation of naïve T cells. In exploring the mechanisms of these changes, we identified several genes and proteins by microarray analysis and 2D gel electrophoresis. Changes were found in the cytoskeleton-related genes and proteins (such as cofilin1 and profilin1) and matrix-related genes and proteins (such as TIMP1 and MMP9). These findings provide a molecular basis for the biomechanical and immunological changes of DCs in response to K562 and may help to elucidate the mechanism for tumor immune escape.  相似文献   

20.
Dendritic cells (DCs) act as sentinels in peripheral tissues, continuously scavenging for antigens in their immediate surroundings. Their involvement in T cell responses is generally thought to consist of a linear progression of events, starting with capture of antigen in peripheral tissues such as the skin followed by migration to draining lymphoid organs and MHC-restricted presentation of antigen-derived peptide to induce T cell priming. The role of tissue-derived DCs in the direct priming of immune responses has lately been challenged. It now appears that, at least in some instances, a non-migratory subtype of DCs in the secondary lymphoid tissue presents tissue-derived antigen to T cells. Here, we review recent developments in research on DC function in the priming of immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号