首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A total of 120 E mu-Pim1 heterozygous mice and 120 wild-type mice were exposed for 1 h/day 5 days/week at each of the four exposure levels in "Ferris-wheel" exposure systems for up to 104 weeks to GSM-modulated 898.4 MHz radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg. In addition, 120 heterozygous and 120 wild-type mice were sham-exposed; there was also an unrestrained negative control group. Four exposure levels were used to investigate whether a dose-response effect could be detected. Independent verification confirmed that the exposures in the current study were nonthermal. There was no significant difference in the incidence of lymphomas between exposed and sham-exposed groups at any of the exposure levels. A dose-response effect was not detected. The findings showed that long-term exposures of lymphoma-prone mice to 898.4 MHz GSM radiofrequency (RF) radiation at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg had no significant effects when compared to sham-irradiated animals. A previous study (Repacholi et al., Radiat. Res. 147, 631-640, 1997) reported that long-term exposure of lymphoma-prone mice to one exposure level of 900 MHz RF radiation significantly increased the incidence of non-lymphoblastic lymphomas when compared to sham-irradiated animals.  相似文献   

2.
The aim of this study was to evaluate whether daily whole-body exposure to 900 MHz GSM-modulated radiation could affect spleen lymphocytes. C57BL/6 mice were exposed 2 h/day for 1, 2 or 4 weeks in a TEM cell to an SAR of 1 or 2 W/kg. Untreated and sham-exposed groups were also examined. At the end of the exposure, mice were killed humanely and spleen cells were collected. The number of spleen cells, the percentages of B and T cells, and the distribution of T-cell subpopulations (CD4 and CD8) were not altered by the exposure. T and B cells were also stimulated ex vivo using specific monoclonal antibodies or LPS to induce cell proliferation, cytokine production and expression of activation markers. The results did not show relevant differences in either T or B lymphocytes from mice exposed to an SAR of 1 or 2 W/kg and sham-exposed mice with few exceptions. After 1 week of exposure to 1 or 2 W/kg, an increase in IFN-gamma (Ifng) production was observed that was not evident when the exposure was prolonged to 2 or 4 weeks. This suggests that the immune system might have adapted to RF radiation as it does with other stressing agents. All together, our in vivo data indicate that the T- and B-cell compartments were not substantially affected by exposure to RF radiation and that a clinically relevant effect of RF radiation on the immune system is unlikely to occur.  相似文献   

3.
There is some concern that short-term memory loss or other cognitive effects may be associated with the use of mobile cellular telephones. In this experiment, the effect of repeated, acute exposure to a low intensity 900 MHz radiofrequency (RF) field pulsed at 217 Hz was explored using an appetitively-motivated spatial learning and working memory task. Adult male C57BL/6J mice were exposed under far field conditions in a GTEM cell for 45 min each day for 10 days at an average whole-body specific energy absorption rate (SAR) of 0.05 W/kg. Their performance in an 8-arm radial maze was compared to that of sham-exposed control animals. All behavioral assessments were performed without handlers having knowledge of the exposure status of the animals. Animals were tested in the maze immediately following exposure or after a delay of 15 or 30 min. No significant field-dependent effects on performance were observed in choice accuracy or in total times to complete the task across the experiment. These results suggest that exposure to RF radiation simulating a digital wireless telephone (GSM) signal under the conditions of this experiment does not affect the acquisition of the learned response. Further studies are planned to explore the effects of other SARs on learned behavior. Bioelectromagnetics 21:151-158, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

4.
The increased use of mobile phones has raised the question of possible health effects of such devices, particularly the risk of cancer. It seems unlikely that the low-level radiofrequency (RF) radiation emitted by them would damage DNA directly, but its ability to act as a tumor promoter is less well characterized. In the current study, we evaluated the effect of low-level RF radiation on the development of cancer initiated in mice by ionizing radiation. Two hundred female CBA/S mice were randomized into four equal groups at the age of 3 to 5 weeks. The mice in all groups except the cage-control group were exposed to ionizing radiation at the beginning of the study and then to RF radiation for 1.5 h per day, 5 days a week for 78 weeks. One group was exposed to continuous NMT (Nordic Mobile Telephones)-type frequency-modulated RF radiation at a frequency of 902.5 MHz and a nominal average specific absorption rate (SAR) of 1.5 W/kg. Another group was exposed to pulsed GSM (Global System for Mobile)-type RF radiation (carrier-wave frequency 902.4 MHz, pulse frequency 217 Hz) at a nominal average SAR of 0.35 W/kg. The control animals were sham-exposed. Body weight, clinical signs, and food and water consumption were recorded regularly. Hematological examinations and histopathological analyses of all lesions and major tissues were performed on all animals. The RF-radiation exposures did not increase the incidence of any neoplastic lesion significantly. We conclude that the results do not provide evidence for cancer promotion by RF radiation emitted by mobile phones.  相似文献   

5.
The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.  相似文献   

6.
Numerical and experimental methods were employed to assess the individual and collective dosimetry of mice used in a bioassay on the exposure to pulsed radiofrequency energy at 900 MHz in the Ferris-wheel exposure system (Utteridge et al., Radiat. Res. 158, 357-364, 2002). Twin-well calorimetry was employed to measure the whole-body specific absorption rate (SAR) of mice for three body masses (23 g, 32 g and 36 g) to determine the lifetime exposure history of the mice used in the bioassay. Calorimetric measurements showed about 95% exposure efficiency and lifetime average whole-body SARs of 0.21, 0.86, 1.7 and 3.4 W kg(-1) for the four exposure groups. A larger statistical variation in SAR was observed in the smallest mice because they had the largest variation in posture inside the plastic restrainers. Infrared thermography provided SAR distributions over the sagittal plane of mouse cadavers. Thermograms typically showed SAR peaks in the abdomen, neck and head. The peak local SAR at these locations, determined by thermometric measurements, showed peak-to-average SAR ratios below 6:1, with typical values around 3:1. Results indicate that the Ferris wheel fulfills the requirement of providing a robust exposure setup, allowing uniform collective lifetime exposure of mice.  相似文献   

7.
Patched1 heterozygous knockout mice (Ptc1+/-), an animal model of multiorgan tumorigenesis in which ionizing radiation dramatically accelerates tumor development, were used to study the potential tumorigenic effects of electromagnetic fields (EMFs) on neonatal mice. Two hundred Ptc1+/- mice and their wild-type siblings were enrolled in this study. Newborn mice were exposed to 900 MHz radiofrequency radiation (average SAR: 0.4 W/kg for 5 days, 0.5 h twice a day) or were sham exposed. We found that RF EMFs simulating the Global System for Mobile Communications (GSM) did not affect the survival of the mice, because no statistically significant differences in survival were found between exposed and sham-exposed animals. Also, no effects attributable to radiofrequency radiation were observed on the incidence and histology of Ptc1-associated cerebellar tumors. Moreover, the skin phenotype was analyzed to look for proliferative effects of RF EMFs on the epidermal basal layer and for acceleration of preneoplastic lesions typical of the basal cell carcinoma phenotype of this model. We found no evidence of proliferative or promotional effects in the skin from neonatal exposure to radiofrequency radiation. Furthermore, no difference in Ptc1-associated rhabdomyosarcomas was detected between sham-exposed and exposed mice. Thus, under the experimental conditions tested, there was no evidence of life shortening or tumorigenic effects of neonatal exposure to GSM RF radiation in a highly tumor-susceptible mouse model.  相似文献   

8.
The aim of this study was to design, implement and analyze a space-efficient setup for the whole-body exposure of unrestrained Wistar rats to radiofrequency (RF) electromagnetic fields at 900 MHz. The setup was used for 2 years in a cocarcinogenesis study and part of it for 5 weeks in a central nervous system (CNS) study. Up to 216 rats could be placed in separate cages in nine different exposure chambers on three racks requiring only 9 m2 of floor area (24 rats per m2). Chambers were radial transmission lines (RTL), where the rats could freely move in their cages where food and drinking water was provided ad libitum except during RF exposure periods. Dosimetrical analysis was based on FDTD computations with heterogeneous rat models and was validated with calorimetrical measurements carried out with homogeneous phantoms. The estimated whole-body average specific absorption rates (SAR) of rats were 0 (sham), 0.4, and 1.3 W/kg in the cocarcinogenesis study and 0 (sham), 0.27, and 2.7 W/kg in the CNS study with an estimated uncertainty of 3 dB (K = 2). The instantaneous and lifetime variations of whole-body average SAR due to the movement of rats were estimated to be 2.3 and 1.3 dB (K = 1), respectively.  相似文献   

9.
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann–Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.  相似文献   

10.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

11.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

12.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

13.
Full-size models of a man and a rhesus monkey were exposed to radiofrequency (RF) radiation at 225 MHz. The model of man was also exposed to 2,000 MHz. Specific absorption rates (SARs) were measured in partial-body sections, such as the arms, legs, etc., using gradient-layer calorimeters. Also, front-surface thermographic images were obtained to qualitatively show the heating patterns. For all of the configurations used, the SAR in the limbs was much higher than in the torso. Agreement (whole-body SARs) with spheroidal models was better for both models at 225 MHz than at 2,000 MHz. These results indicate that in the frequency range two orders of magnitude above whole-body resonance, SAR in the limbs significantly contributes to the whole-body average SAR.  相似文献   

14.
The effects of acute exposure to GSM-900 microwaves (900 MHz, 217 Hz pulse modulation) on the clinical parameters of the acute experimental allergic encephalomyelitis (EAE) model in rats were investigated in two independent experiments: rats were either habituated or nonhabituated to the exposure restrainers. EAE was induced with a mixture of myelin basic protein and Mycobacterium tuberculosis. Female Lewis rats were divided into cage control, sham exposed, and two groups exposed either at 1.5 or 6.0 W/kg local specific absorption rate (SAR averaged over the brain) using a loop antenna placed over their heads. There was no effect of a 21 day exposure (2 h/day) on the onset, duration, and termination of the EAE crisis.  相似文献   

15.
The effects of low-level radiofrequency (RF) radiation and elevated temperature on ornithine decarboxylase (ODC) activity were investigated in murine L929 fibroblasts. The cells were exposed at 900 MHz either to a pulse-modulated (pulse frequency 217 Hz; GSM-type modulation) or a continuous wave signal at specific absorption rate (SAR) levels of 0.2 W kg−1 (0.1–0.3 W kg−1) and 0.4 W kg−1 (0.3–0.5 W kg−1) for 2, 8, or 24 h. RF radiation did not affect cellular ODC activity. However, a slight increase in temperature (0.8–0.9°C) in the exposure system lead to decreased ODC activity in cell cultures. This was verified by tests in which cells were exposed to different temperatures in incubators. The results show that ODC activity is sensitive to small temperature differences in cell cultures. Hence, a precise temperature control in cellular ODC activity studies is needed.  相似文献   

16.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

17.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

18.
We examined the effects of in vivo exposure to a GSM-modulated 900 MHz RF field on B-cell peripheral differentiation and antibody production in mice. Our results show that exposure to a whole-body average specific absorption rate (SAR) of 2 W/kg, 2 h/day for 4 consecutive weeks does not affect the frequencies of differentiating transitional 1 (T1) and T2 B cells or those of mature follicular B and marginal zone B cells in the spleen. IgM and IgG serum levels are also not significantly different among exposed, sham-exposed and control mice. B cells from these mice, challenged in vitro with LPS, produce comparable amounts of IgM and IgG. Moreover, exposure of immunized mice to RF fields does not change the antigen-specific antibody serum level. Interestingly, not only the production of antigen-specific IgM but also that of IgG (which requires T-B-cell interaction) is not affected by RF-field exposure. This indicates that the exposure does not alter an ongoing in vivo antigen-specific immune response. In conclusion, our results do not indicate any effects of GSM-modulated RF radiation on the B-cell peripheral compartment and antibody production and thus provide no support for health-threatening effects.  相似文献   

19.
Ejaculated, density purified, human spermatozoa were exposed to pulsed 900 MHz GSM mobile phone radiation at two specific absorption rate levels (SAR 2.0 and 5.7 W/kg) and compared with controls over time. Change in sperm mitochondrial membrane potential was analysed using flow cytometry. Sperm motility was determined by computer assisted sperm analysis (CASA). There was no effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential. This was also the case for all kinematic parameters assessed at a SAR of 2.0 W/kg. However, over time, the two kinematic parameters straight line velocity (VSL) and beat-cross frequency (BCF) were significantly impaired (P < 0.05) after the exposure at SAR 5.7 W/kg and no exposure by time interaction was present. This result should not be ascribed to thermal effects, due to the cooling methods employed in the RF chamber and temperature control within the incubator.  相似文献   

20.
The purpose of this study is to bridge this gap by investigating effects of long term 900?MHz mobile phone exposure on reproductive organs of male rats. The study was carried out on 14 adult Wistar Albino rats by dividing them randomly into two groups (n: 7) as sham group and exposure group. Rats were exposed to 900?MHz radiofrequency (RF) radiation emitted from a GSM signal generator. Point, 1?g and 10?g specific absorption rate (SAR) levels of testis and prostate were found as 0.0623?W/kg, 0.0445?W/kg and 0.0373?W/kg, respectively. The rats in the exposure group were subject to RF radiation 3?h per day (7?d a week) for one year. For the sham group, the same procedure was applied, except the generator was turned off. At the end of the study, epididymal sperm concentration, progressive sperm motility, abnormal sperm rate, all-genital organs weights and testis histopathology were evaluated. Any differences were not observed in sperm motility and concentration (p?>?0.05). However, the morphologically normal spermatozoa rates were found higher in the exposure group (p?p?p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号