首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
秀山大桥主桥为主跨926m的双塔钢箱梁地锚式悬索桥,采用三跨连续弹性支承体系。为了提高钢箱梁吊装过程的结构计算精度,采用MIDAS Civil软件建立全桥施工过程有限元模型,对成桥恒载目标、主缆与加劲梁线形、无索区体系转换及合龙过程中的计算精度影响因素进行分析。结果表明:该桥加劲梁的整体刚度和恒载分配需分阶段形成;采用主缆-索鞍的接触模拟方法计算主缆线形,能有效消除索鞍附近区域主缆线形的计算误差;根据临时连接件的实际开口边界状态模拟加劲梁的铰接状态,可得到较为准确的加劲梁线形;在体系转换及合龙阶段,根据预抬量、预偏量、合龙口位移差等指标对加劲梁的内力和线形进行精确控制,最终使成桥达到预定理想状态。  相似文献   

2.
杨泗港长江大桥主桥为单跨1 700m的地锚式悬索桥。加劲梁为华伦式钢桁梁,采用千吨级整体节段吊装、全焊结构新技术。单节段加劲梁采用2台900t缆载吊机抬吊安装,最大吊重约1 010t,全桥共配置4台吊机,由跨中向两岸桥塔逐段对称吊装。加劲梁按成桥线形制造安装,规避产生永久施工内力;加劲梁吊装过程中采取了部分配重+临时连接的最优临时连接方案。汉阳侧岸滩区域梁段采用荡移+滑移、墩顶无吊索区域梁段采用荡移、其余标准梁段均采用2台吊机垂直抬吊架设。主索鞍随着加劲梁的吊装分3个阶段顶推复位;采用预偏法施工合龙段;合龙后从跨中向两岸桥塔依次上下左右对称进行栓焊永久连接。  相似文献   

3.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔钢-混凝土结合梁悬索桥。为保证该桥的成桥线形和结构受力安全满足设计要求,主缆架设时,提出了考虑温度、跨度和塔顶高程影响的基准索股跨中位置参数影响公式,并采用索股分层定位技术架设一般索股;吊索无应力下料长度计算结果采用正装和倒拆2种计算手段相互验证;加劲梁采用4台缆载吊机,按照"从两中跨靠近中塔开始架设,而后再从边塔向边墩、跨中方向架设"的顺序吊装;混凝土桥面板采用"工厂预制、桥上结合"的方式施工;在加劲梁所有梁段就位、节段间正式连接后,再浇筑混凝土湿接缝;在两主跨各吊装27个加劲梁节段后,主索鞍共分6次顶推到位。采取以上监控技术后,该桥的成桥线形及桥塔偏位均满足要求。  相似文献   

4.
大跨悬索桥加劲梁吊装阶段的施工控制中,吊装前的控制计算和吊装期间的监测十分关键.为消除主缆施工期间产生的误差对加劲粱施工的影响,并保证成桥后桥面线形符合设计要求,提出了一种反馈控制分析方法;采用有限元正装计算方法计算各吊装阶段施工控制参数的理论值以及主索鞍自由滑移量等,并根据该滑移量和索塔的抗弯能力确定索鞍的顶推时机和顶推量.通过对宜昌长江公路大桥的施工控制,得出了主缆跨中标高、主索鞍的滑移以及钢箱梁的开口角等在加劲梁吊装过程中的变化规律,并保证了施工过程中结构受力的安全以及加劲梁吊装完后桥面线形符合设计要求.  相似文献   

5.
成桥吊索索力的计算以及主缆线形的确定是空间自锚式悬索桥设计的难点,关注加劲梁的合理受力状态,选取合适的目标函数、设计变量和状态变量,探讨吊索索力的优化计算方法。在吊索力确定以后,结合索段数值分析法和非线性有限元法可以得到自锚式悬索桥主缆的线形和无应力索长。该方法可以推广到空间自锚式悬索桥的初步设计计算中。并以江西上饶大桥为例,验证该方法的有效性。  相似文献   

6.
地锚索的设置是在加劲梁跨度小于主缆跨度的情况下采取的措施,主要出现在山区大跨度悬索桥中,由于情况少见,这方面研究鲜见报道。笔者以矮寨特大悬索桥为工程背景,首先对地锚索的设计与施工进行了介绍;然后针对地锚索的设置与索力大小对成桥状态与正常使用极限状态的影响进行了计算分析比较,得出了地锚索可以改善加劲梁与端吊索受力、稳定活载支反力、优化主缆局部线形的结论,同时确定了地锚索成桥设计索力的合理取值范围;最后对地锚索的安装与张拉过程进行了分析,给出了合理的施工阶段与计算结论。  相似文献   

7.
大跨径自锚式悬索桥合理成桥状态的确定方法   总被引:18,自引:0,他引:18  
通过对有限位移理论和解析迭代法的分析,对基本参数进行分析研究,提出了确定自锚式悬索桥合理成桥状态的思路和方法。以主缆为切入点,在确定主缆线形及吊索、加劲梁内力的情况下,最终得到主缆和吊杆的无应力长度及施工结构状态。基于上述理论,以某主跨328 m的自锚式悬索桥为例,进行了详细的分析,给出了主缆无应力长度、鞍座预偏量、成桥阶段加劲梁、吊杆的内力,确定了该桥的合理成桥状态。  相似文献   

8.
空间缆索自锚式悬索桥成桥状态的确定方法   总被引:5,自引:5,他引:0  
结合悬链线理论和几何非线性有限元方法,对空间缆索自锚式悬索桥成桥状态的确定方法进行了研究。提出了空间主缆和吊索的线形及内力的迭代计算方法,在此基础上建立成桥状态的几何非线性有限元模型,进行非线性迭代计算并不断修改单元无应力原长及刚度矩阵,直至节点位移满足精度要求,即确定了全桥结构的成桥状态。利用该方法能得到满足设计要求的自锚式悬索桥成桥状态,并得到了主缆、吊索、加劲梁的线形、杆件内力等重要信息。算例验证表明了该计算方法是可行的,能够满足工程计算精度要求,可用于空间缆索自锚式悬索桥成桥状态的确定。  相似文献   

9.
刘亦奇 《桥梁建设》2023,(1):130-135
连镇铁路五峰山长江大桥为主跨1 092 m的公铁两用悬索桥,该桥加劲梁一期恒载为501 kN/m,二期恒载为318.1 kN/m,其中二期恒载中的铁路道砟为189.4 kN/m。加劲梁采用不携带二期恒载整节段架设、合龙后铺设二期恒载的方法施工。由于二期恒载达到加劲梁恒载的38.8%,加劲梁合龙后,加劲梁线形未达到成桥线形,在铁路道砟集中摊铺过程中,面临着加劲梁桥面系局部应力分布不均的难题。针对该桥特点,通过分析,该桥有砟轨道采用分阶段对称隔断与连续摊铺相结合的方案施工,将4线铁路分4个阶段进行铺设,阶段1和阶段2采用对称隔断的方式进行底砟及预留线道砟摊铺,阶段3和阶段4采用单向连续的方式进行连镇线轨枕及面砟摊铺。该摊铺方案引起的主缆线形变化较为平缓,避免了施工过程中加劲梁桥面系局部应力集中的问题,采用所提出的方案施工后该桥线形及加劲梁内力控制均较好。  相似文献   

10.
悬索桥索夹安装位置及吊索下料长度计算   总被引:1,自引:0,他引:1  
姜军  孙胜江 《公路》2007,(8):63-66
为确保吊索受力安全和桥面线形符合设计要求,在主缆架设后,根据索塔和主缆实际施工误差预测成桥状态塔顶标高和主缆跨中标高,并依据预测的主缆线形,确定索夹的安装位置和吊索精确的下料长度。  相似文献   

11.
悬索桥主缆求解虚拟梁法的改进   总被引:1,自引:0,他引:1  
对悬索桥主缆求解的虚拟梁法进行了改进,证明了虚拟梁法在竖向荷载作用下主缆上的任意位置均适用,不必在吊杆处断开;推导了基于虚拟梁法的新形式相容方程,以建立主缆任意2个连续状态之间的联系;利用多点支承连续梁的求解方法,给出了加劲梁的活载挠度方程。通过建立以上非线性方程组,不仅可以求解主缆的成桥线形,而且还可以求解活载作用下悬索桥的挠度。通过算例的结果对比,说明了程序的准确性和适用性。  相似文献   

12.
松原市天河大桥北汊主桥为(40+100+266+100+40)m双塔空间索面自锚式悬索桥,桥塔采用钢筋混凝土人字形结构,主梁分为混凝土加劲梁以及钢-混组合梁(由格构式钢梁上铺混凝土桥面板组成)两部分,主缆呈空间三维线形,全桥共51对吊索。桥塔采用液压自爬模施工,通过设置主动支撑以及预偏量控制塔身倾斜度;格构式钢梁采用以直代曲制作,边跨钢梁采用吊机原位吊装,中跨钢梁采用拼装平台上整节段拼装牵引滑移施工;主缆锚固系统位于加劲梁锚墩横梁上,采用厂内预制现场整体吊装施工;主缆架设采用PPWS施工方法,猫道采用预制吊装施工;针对可转动索夹以及球铰底座的特点,改变传统的体系转换临时吊索的使用顺序,达到吊索一次张拉成型。  相似文献   

13.
合理确定吊索张力及主缆线形是自锚式悬索桥设计中的关键问题。基于加劲梁的受力特性,推导了用于吊索张力优化的刚性支承连续梁法;从悬索的基本平衡微分方程出发,提出了主缆线形计算的梁比拟法;两者结合使用,通过常用的杆系结构线性分析程序即可进行吊索力优化及主缆线形计算,从而确定自锚式悬索桥的合理成桥状态。算例分析表明,实用方法的力学意义明确、操作简单且计算精度高,可在设计实践中推广。  相似文献   

14.
依托某双塔对称体系自锚式悬索桥,按几何缩尺比1∶50进行模型静力性能试验研究。模型设计上运用基于刚度相似原理的方程式分析法,获得了多相介质缩尺模型与结构原型的静力相似判据。采用模型试验与有限位移理论相互印证的手段,研究了自锚式悬索桥结构体系在合理成桥状态下的静力学特性。结果表明:除塔附近加强吊杆外,全桥吊索应力分布较为均匀;主缆应力分布特征与主缆线形具有较强相关性;加劲梁在弯矩与轴力组合作用下,上下缘应力分布较为均匀,线形符合设计要求;成桥状态各构件安全储备较大;模型验测试值与理论计算值吻合较好,同时印证了缩尺模型设计的合理性。  相似文献   

15.
针对大跨度悬索桥主缆的精细化分析中不能同时考虑主缆弯曲刚度、主缆初始弯曲、索鞍及缠丝等因素的影响,提出了一种新型的初弯曲梁单元来模拟主缆的弯曲刚度和初始弯曲,通过虚功增量方程推导其切线刚度矩阵,并编制了主缆非线性有限元程序,建立大跨度悬索桥主缆施工过程的有限元模型,计算中考虑了索鞍处主缆线形的修正及由缠丝引起的主缆弯曲刚度的变化.结果表明:弯曲刚度使主缆在恒载作用下的竖向变形减小,成桥状态时由此引起的主缆线形计算偏差没有超过工程精度的要求;成桥状态时靠近桥塔的吊索吊点处主缆的弯矩及弯曲应力显著,需要在大跨度悬索桥主缆设计和施工中加以考虑.  相似文献   

16.
秋浦河桥主桥为双塔双跨结合梁悬索桥,结构形式新颖,主梁成桥状态内力与施工工序高度耦合,施工控制难度较大。由于主梁采用了自重较轻的钢混组合结构,成桥状态吊杆内力和空缆线形对主梁重量参数较为敏感;在主缆架设过程中,考虑到吊索可调整长度小、温度影响大等因素,采用解析方法动态精确计算不同温度下基准索股的架设线形,并对一般索股线形进行了严格控制。因桥塔高度较矮,自重产生的初始压应力小,主梁吊装过程中容易在桥塔中部的截面变化部位产生拉应力,结构体系转换过程非常复杂。针对上述控制难点,对钢梁制作线形以及吊装方案进行了反复调整与优化,提出了较为合理的主梁吊装方案,确保了主梁架设过程中桥塔的安全。  相似文献   

17.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

18.
为了获得自锚式悬索桥施工阶段结构体系转换过程中各构件的受力状况及成桥后结构的力学性能,利用优化方法计算了缆索系统的安装过程,并对三汊矶湘江大桥进行了缩尺比例为1:28的整体模型试验.介绍了优化计算的原理以及模型设计、试验方案的细节,并对施工过程中顶升主梁进行吊索的无应力安装过程以及活载作用下结构力学性能的测试和计算作了详细说明.结果表明:模型试验的测试结果与计算值吻合良好,吊索的无应力安装能够满足施工阶段的受力要求并达到设计成桥线形;活载作用下结构挠度、应力与荷载呈线性关系,叠加原理能够适用.  相似文献   

19.
不同于地锚式悬索桥,自锚式悬索桥先梁后缆的施工方式,使其张拉过程具有显著的可优化性。依托小龙湾自锚式悬索桥工程实例,对自锚式悬索桥张拉过程控制原则、控制目标进行了分析,在满足桥梁结构受力安全的前提下,尽量减少接长杆数量、索鞍顶推次数、千斤顶数量和张拉批次,以较少的人力物力财力和时间来完成吊索张拉方案。建立有限元模型,模拟分析小龙湾大桥张拉全过程,根据吊索张拉安全系数、桥塔及加劲梁允许最大压应力、最小拉应力等指标,提出适用于该桥的张拉控制方案。对比分析了成桥状态与张拉过程中吊索的最大索力,发现在跨中14~16号吊索索力较成桥状态索力有所增加,但均能满足张拉过程吊索安全要求。对吊索张拉过程中桥塔及加劲梁的应力变化规律进行了总结,发现在张拉14~17号吊索时,桥塔、加劲梁等混凝土构件应力发生显著变化。  相似文献   

20.
重庆市鹅公岩轨道专用桥主桥为(50+210+600+210+50)m的双塔双索面自锚式悬索桥,全桥采用"先梁后缆"法施工,边跨加劲梁采用顶推法施工,中跨加劲梁采用先斜拉后悬索方法施工。为选择合理的斜拉桥目标线形、斜拉索索力调整方案、斜拉索拆除顺序与拆除时机等,采用MIDAS Civil软件建立自锚式悬索桥施工过程计算模型,针对各种方案下的结构特性进行模拟计算与分析评定。计算模拟结果表明:成桥后调整部分斜拉索索力,将加劲梁拉升至接近去除二期恒载的线形作为临时斜拉桥的目标线形的方案,综合效益较优;选择从跨中16号向塔侧6号斜拉索方向调整11对索的索力调整方案;吊索张拉全部完成后临时斜拉索按自上而下顺序拆除的方案更为安全合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号