首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maturity-Onset Diabetes of the Young (MODY) is a monogenic form of Diabetes Mellitus (DM) characterized by an autosomal dominant inheritance, onset usually before 25 years of age and a primary defect in glucose-stimulated insulin secretion, Glucokinase (GCK) acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. The mutation in the gene encoding GCK results in enzyme inactivation cause MODY2. Functional studies of naturally occurring GCK mutations associated with hyperglycaemia provide further insight into the biochemical basis of glucose sensor regulation. In this study 100 diabetic Jordanian patients with MODY2 phenotype and 150 Normal control subjects were screened for the presence of GCK gene mutations including the missense mutations at position Thr228Ala in exon 7, Gly299Arg in exon 8 and nonsense mutation Ser383Ter in exon 9, utilizing polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) analysis. The results shows no Thr228Ala, Gly299Arg and Ser383Ter mutations were detected in both groups, which was differ from the results obtained for Italian and Caucasian from the Oxford region in UK MODY2 patients. Our data indicated that the previously studied mutations in Italian and Caucasian patients in the GCK gene are not common in MODY Jordanian population, suggesting a racial difference can be found in the frequency of the GCK polymorphism.  相似文献   

2.
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.  相似文献   

3.
4.

Background

Maturity onset diabetes of the young type 2 (or GCK MODY) is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK).

Methodology/Principal Findings

We screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients'' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%); 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu) and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: ∼59%) than in the large (4/12: 33%) domain or in the connection (1/12: 8%) region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD) OGTT = 7.8 mMol/L (1.8)] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04).

Conclusions

The prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings) but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation.  相似文献   

5.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   

6.

Background

Some patients diagnosed as having type 2 diabetes mellitus (T2DM) are, instead, affected by multigenerational diabetes whose clinical characteristics are mostly undefined.

Objective

1. To identify among patients who had been previously defined as affected by T2DM those, in fact, affected by multigenerational diabetes; 2. After excluding patients carrying the most common MODY genes and mitochondrial mutations, we compared clinical features of remaining patients with those of patients with T2DM.

Methods

Among 2,583 consecutive adult patients who had been defined as affected by T2DM, we looked for those with diabetes in ≥3 consecutive generations. All probands were screened for mutations in six MODY genes (HNF4A, GCK, HNF1A, PDX1, HNF1B and NeuroD1) and for the A3243G mitochondrial mutation. After excluding patients with mutations in one of such genes, we compared clinical features of the remaining 67 patients (2.6% of the whole initial sample) affected by multigenerational “familial diabetes of the adulthood” (FDA) and of their diabetic relatives (n = 63) to those with T2DM (n = 1,028) by generalized hierarchical linear models followed by pairwise comparisons.

Results

Age, age at diagnosis, proportion of hypertension (all p<0.001), and waist circumference (p<0.05) were lower in FDA than T2DM. Nonetheless, the two groups had similar age-adjusted incidence rate of all-cause mortality.

Conclusions

Beside younger age at diagnosis, FDA patients show lower waist circumference and reduced proportion of hypertension as compared to those with T2DM; despite such reduced potential cardiovascular risk factors, FDA patients did not show a reduced mortality risk than patients with T2DM.  相似文献   

7.
Null mutations in the glucokinase (GCK) gene can cause autosomal dominant type 2 diabetes (maturity onset diabetes of the young, MODY); however, MODY is genetically heterogeneous. In both liver and pancreatic islet, glucokinase is subject to inhibition by a regulatory protein (GCKR). Given the role of GCK in MODY, GCKR is itself a candidate type 2 diabetes susceptibility gene. Here we describe the structure of full-length (2.2 kb) cDNA for human GCKR, from the hepatoblastoma cell line HepG2. The human GCKR translation product has 625 amino acids and a predicted molecular weight of 68,700. It has 88% amino acid identity to rat GCKR. Yeast artificial chromosomes (YAC clones) containing human GCKR were isolated, and the gene was mapped to Chromosome (Chr) 2p23 by fluorescent in situ hybridization and somatic cell hybrid analysis.EMBL database accession numbers: Z48475 and Z48476.  相似文献   

8.
Hu Y  Ren Y  Luo RZ  Mao X  Li X  Cao X  Guan L  Chen X  Li J  Long Y  Zhang X  Tian H 《Journal of lipid research》2007,48(8):1681-1688
Increased plasma triglyceride and free fatty acid levels are frequently associated with type 2 diabetes mellitus (T2DM). To test the hypothesis that LPL gene mutations contribute to the hypertriglyceridemia observed in members of T2DM pedigrees, we screened the LPL gene in 53 hypertriglyceridemic members of 26 families. Four known and three novel mutations were identified. All three novel mutations, Lys312insC, Thr361insA, and double mutation Lys312insC + Asn291Ser, are clinically associated with hypertriglyceridemia. In vitro mutagenesis and expression studies confirm that these variants are associated with a significant reduction in LPL activity. The modeled structures displaying the Lys312insC and Thr361insA mutations showed loss of the activity-related C-terminal domain in the LPL protein. Another novel double mutation, Lys312insC + Asn291Ser, resulted in the loss of the catalytic ability of LPL attributable to the complete loss of the C-terminal domain and alteration in the heparin association site. Thus, these novel mutations of the LPL gene contribute to the hypertriglyceridemia observed in members of type 2 diabetic pedigrees.  相似文献   

9.
Type 2 diabetes is a global problem, and current ineffective therapeutic strategies pave the way for novel treatments like small molecular activators targeting glucokinase (GCK). GCK activity is fundamental to beta cell and hepatocyte glucose metabolism, and heterozygous activating and inactivating GCK mutations cause hyperinsulinemic hypoglycemia (HH) and maturity onset diabetes of the young (MODY) respectively. Over 600 naturally occurring inactivating mutations have been reported, whereas only 13 activating mutations are documented to date. We report two novel GCK HH mutations (V389L and T103S) at residues where MODY mutations also occur (V389D and T103I). Using recombinant proteins with in vitro assays, we demonstrated that both HH mutants had a greater relative activity index than wild type (6.0 for V389L, 8.4 for T103S, and 1.0 for wild type). This was driven by an increased affinity for glucose (S(0.5), 3.3 ± 0.1 and 3.5 ± 0.1 mm, respectively) versus wild type (7.5 ± 0.1 mm). Correspondingly, the V389D and T103I MODY mutants had markedly reduced relative activity indexes (<0.1). T103I had an altered affinity for glucose (S(0.5), 24.9 ± 0.6 mm), whereas V389D also exhibited a reduced affinity for ATP and decreased catalysis rate (S(0.5), 78.6 ± 4.5 mm; ATP(K(m)), 1.5 ± 0.1 mm; K(cat), 10.3 ± 1.1s(-1)) compared with wild type (ATP(K(m)), 0.4 ± <0.1; K(cat), 62.9 ± 1.2). Both Thr-103 mutants showed reduced inhibition by the endogenous hepatic inhibitor glucokinase regulatory protein. Molecular modeling demonstrated that Thr-103 maps to the allosteric activator site, whereas Val-389 is located remotely to this position and all other previously reported activating mutations, highlighting α-helix 11 as a novel region regulating GCK activity. Our data suggest that pharmacological manipulation of GCK activity at locations distal from the allosteric activator site is possible.  相似文献   

10.
11.
Glucokinase (GCK) plays a key role in glucose homeostasis. Gestational diabetes mellitus increases the risk of gestational complications in pregnant women and fetuses. We screened for mutations in coding and flanking regions of the GCK gene in pregnant women with or without gestational diabetes in a Brazilian population. A sample of 200 pregnant women classified as healthy (control, N = 100) or with gestational diabetes (N = 100) was analyzed for mutations in the GCK gene. All gestational diabetes mellitus patients had good glycemic control maintained by diet alone and no complications during pregnancy. Mutations were detected by single-strand conformation polymorphism and DNA sequencing. Thirteen of the 200 subjects had GCK gene mutations. The mutations detected were in intron 3 (c.43331A>G, new), intron 6 (c.47702T>C, rs2268574), intron 9 (c.48935C>T, rs2908274), and exon 10 (c.49620G>A, rs13306388). None of these GCK mutations were found to be significantly associated with gestational diabetes mellitus. In summary, we report a low frequency of GCK mutations in a pregnant Brazilian population and describe a new intronic variation (c.43331A>G, intron 3). We conclude that mutations in GCK introns and in non-translatable regions of the GCK gene do not affect glycemic control and are not correlated with gestational diabetes mellitus.  相似文献   

12.
Jiang  Yanyan  Jiang  Fusong  Li  Ming  Wu  Qingkai  Xu  Chenming  Zhang  Rong  Song  Mingqiang  Wang  Yanzhong  Wang  Ying  Chen  Yating  Zhang  Juan  Ge  Xiaoxu  Zhu  Qihan  Zhuang  Langen  Yang  Di  Lu  Ming  Wang  Feng  Jiang  Meisheng  Liu  Xipeng  Liu  Yanjun  Liu  Limei 《Molecular and cellular biochemistry》2022,477(5):1629-1643
Molecular and Cellular Biochemistry - Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy...  相似文献   

13.

Background

A number of case-control studies were conducted to investigate the association of common type 2 diabetes (T2D) risk gene polymorphisms with gestational diabetes mellitus (GDM). However, these studies have yielded contradictory results. We therefore performed a meta-analysis to derive a more precise estimation of the association between these polymorphisms and GDM, hence achieve a better understanding to the relationship between T2D and GDM.

Methods

PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between 9 polymorphisms from 8 genes and susceptibility to GDM. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity among articles and their publication bias were also tested.

Results

We identified 22 eligible studies including a total of 10,336 GDM cases and 17,445 controls. We found 8 genetic polymorphisms were significantly associated with GDM in a random-effects meta-analysis. These polymorphisms were in or near the following genes: TCF7L2 (rs7903146), MTNR1B (rs10830963), IGF2BP2 (rs4402960), KCNJ11 (rs5219), CDKAL1 (rs7754840), KCNQ1 (rs2237892 and rs2237895) and GCK (rs4607517); while no association was found for PPARG with GDM risk. Similar results were also observed under dominant genetic model for these polymorphisms.

Conclusions

This meta-analysis found 8 genetic variants associated with GDM. The relative contribution and relevance of the identified genes in the pathogenesis of GDM should be the focus of future studies.  相似文献   

14.
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence.Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning.In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.  相似文献   

15.
Mutations of the hepatocyte nuclear factor 4 alpha (HNF-4alpha) gene have been demonstrated in maturity-onset diabetes of the young (MODY) 1 families. To investigate the possibility that the HNF-4alpha gene contributes to the onset of non-insulin-dependent diabetes mellitus (NIDDM) in Japanese patients, we screened all exons and flanking introns of this gene for mutations in 100 patients with NIDDM diagnosed after 25 years of age. We identified two missense mutations: M49V in exon 1c and T1301 in exon 4; and two nucleotide substitutions in introns: cytosine to thymidine at -5 nt in intron 1b and adenine to thymidine at -21 nt in intron 5. We screened an additional 220 diabetic subjects for the polymorphism in intron 1b. The c/t substitution in intron 1b was associated with NIDDM. This substitution in the polypyrimidine tract, an important cis-acting element directing intron removal, is likely to influence pre-mRNA splicing of this gene. T1301 in exon 4 was observed in only two diabetic subjects. This mutation could influence the conformation of this peptide, resulting in changes in ligand binding domain function. M49V in exon 1c was found in both diabetic and non-diabetic subjects; isoforms HNF-4alpha 4, 5, and 6 with this mutation may impair glucose metabolism in tissue. In contrast to the primary cause of nonsense and missense mutations of the HNF-4alpha gene in MODY1, the nucleotide substitution in intron 1b may partially contribute to development of NIDDM in combination with other genetic and environmental factors.  相似文献   

16.
Maturity Onset Diabetes of Young (MODY) is a monogenic and autosomal dominant form of diabetes mellitus with onset of the disease often before 25 years of age. It is due to dysfunction of pancreatic ß cells characterised by non-ketotic diabetes and absence of pancreatic auto-antibodies. It is frequently mistaken for type 1 or type 2 diabetes mellitus. Diagnosis of MODY is important as the GCK subtype has better prognosis and may not require any treatment. Subtypes HNF1A and HNF4A are sensitive to sulfonylureas, however diabetes complications are common if not treated early. Moreover, there is genetic implication for the patient and family. Rare MODY subtypes can be associated with pancreatic and renal anomalies as well as exocrine dysfunction of the pancreas. So far there are six widely accepted subtypes of MODY described but the list has grown to nine. Although the majority of diabetes mellitus in youth remains type 1 and the incidence of type 2 is rising, MODY should be considered in patients with non-ketotic diabetes at presentation, and in patients with a strong family history of diabetes mellitus without pancreatic auto-antibodies. Furthermore the diagnosis must be confirmed by molecular studies. With advancement in genomic technology, rapid screening for MODY mutations will become readily available in the future.  相似文献   

17.
The hepatocyte nuclear factor (HNF)4alpha, a member of the nuclear receptor superfamily, regulates genes that play a critical role in embryogenesis and metabolism. Recent studies have shown that mutations in the human HNF4alpha gene cause a rare form of type 2 diabetes, maturity onset diabetes of the young (MODY1). To investigate the properties of these naturally occurring HNF4alpha mutations we analysed five MODY1 mutations (R154X, R127W, V255M, Q268X and E276Q) and one other mutation (D69A), which we found in HepG2 hepatoma cells. Activation of reporter genes in transfection assays and DNA binding studies showed that the MODY1-associated mutations result in a variable reduction in function, whereas the D69A mutation showed an increased activity on some promoters. None of the MODY mutants acted in a dominant negative manner, thus excluding inactivation of the wild-type factor as a critical event in MODY development. A MODY3-associated mutation in the HNF1alpha gene, a well-known target gene of HNF4alpha, results in a dramatic loss of the HNF4 binding site in the promoter, indicating that mutations in the HNF4alpha gene might cause MODY through impaired HNF1alpha gene function. Based on these data we propose a two-hit model for MODY development.  相似文献   

18.
Summary Members of three families with maturity onset diabetes of youth (MODY) and seven with common type 2 diabetes were typed for six DNA markers (H-RAS, INS, HBBC, PTH, CALC1, CAT) on the short arm of chromosome 11. Using conventional pairwise linkage analysis, close linkage in the MODY families was excluded for all six markers. By multipoint analysis and a genetic map of the short arm of chromosome 11, MODY was excluded from a region of at least 35 and up to 60 centiMorgans (cM) on the short arm of chromosome 11. Multipoint analysis in the type 2 families also excludes linkage to the INS, H-RAS region of at least 3 and up to 30 cM. This study using multipoint linkage analysis in non-insulin dependent diabetes provides strong evidence against a role for mutations in or around the insulin gene in the causation of MODY or type 2 diabetes in the families studied.  相似文献   

19.
Acromesomelic dysplasia, type Maroteaux is a disorder characterized by disproportionate short stature predominantly affecting the middle and distal segments of the upper and lower limbs. It is an autosomal recessive disorder due to mutation in NPR2 gene which impairs skeletal growth. To screen the mutations in the gene NPR2, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected individuals of four families and sequenced. Four homozygous mutations in four different families were identified. These include three novel mutations including a deletion frameshift mutation (p.Cys586Ter), one nonsense mutation (p.Arg479Ter), one missense mutation (p.Val187Asp) and one reported missense mutation (p.Tyr338Cys). The study describes phenotypes of Indian patients and expands the mutation spectrum of the disorder.  相似文献   

20.
We evaluated possible roles of interleukin-8 gene polymorphisms (1633T/C-rs2227543, 251A/T-rs4073) and interleukin-18 gene polymorphisms (-607C/A-rs1946518, -137G/C-rs187238) in the development of diabetic retinopathy (DR) in Caucasians with type 2 diabetes. 271 patients with DR and 113 without diabetic retinopathy were enrolled in this cross-sectional study. We did not observe an association between either interleukin-8 gene polymorphisms (1633T/C, 251A/T) or interleukin-18 gene polymorphisms (-607C/A, -137G/C) and diabetic retinopathy in Caucasians with type 2 diabetes. We did not find statistically significant differences in interleukin-8 serum levels between diabetics with the TT and AA genotype and those with other genotypes. The interleukin-18 serum levels between diabetics with the CC genotype of the -607C/A polymorphism and those with other genotypes (AA, AC) were not significantly different. Moreover, we did not observe a statistically significant effect of the tested polymorphisms of either interleukin-8 or interleukin-18 genes on serum levels in diabetics. In conclusion, our study indicates that the examined polymorphisms of interleukin-8 (1633T/C, 251A/T) and interleukin-18 (-607C/A or the -137G/C) genes are not genetic risk factors for diabetic retinopathy. Therefore, they may not be used as genetic markers for diabetic retinopathy in Caucasians with type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号