首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxytocin (OT) may be implicated in the modulation of hypothalamo-pituitary-adrenal axis (HPA) at each level. In mature females the influence of OT on the HPA axis appeared to be dependent on ovarian steroid milieu and stress. In cyclic sows, the role of OT in the regulation of corticoid secretion is unknown. In the present study changes in plasma cortisol and corticosterone concentrations in response to exogenous OT (in vivo experiment) and a direct influence of OT on adrenocortical steroidogenesis (in vitro experiment) were determined in luteal- and follicular-phase gilts. In the luteal-phase gilts (n=5), OT injections increased both cortisol (p<0.01) and corticosterone (p<0.05) plasma concentrations, but in the follicular-phase gilts (n=5) only the concentration of cortisol (p<0.05) was elevated in response to the treatment. Areas under the cortisol and corticosterone curves calculated for 30 min period after the OT injection were statistically higher (p<0.05) during the luteal than the follicular phase. In the in vitro experiment, two doses of OT (10(-7) and 10(-6) M) increased (p<0.05) secretion of cortisol by porcine adrenocortical cells representing the luteal phase, but not the follicular phase. However, OT did not affect the release of corticosterone by the cells. Incubation of the cells with the OT-antagonist (10(-5) M) abolished the effects of OT on cortisol secretion. Thus, in the present study, stimulatory effects of OT on the hypothalamo-pituitary-adrenal axis were demonstrated in cyclic gilts. The changes in plasma corticoid concentrations in response to exogenous OT were more prominent during the luteal than the follicular phase of the estrous cycle. Moreover, the in vitro experiment revealed a possibility of direct action of OT on adrenocortical cells isolated from luteal phase gilts. These results suggest that OT may participate in the modulation of HPA axis activity in pigs.  相似文献   

2.
Peripubertal gilts (n = 25) were treated with corn oil (CO) or ovarian steroids, one month following an ovariectomy. The first day of treatment was assigned as the first day of the experiment. The gilts received: Group (Gr) I (n = 4)--CO (2 mL x day(-1) from 1st to 12th day), Gr II (n = 4) and Gr III (n = 4)--progesterone (P4; 10 to 100 mg x day(-1) from 1st to 12th day), Gr IV (n = 5)--estradiol benzoate (EB; 400 microg x day(-1) from 1st to 3rd day), Gr V (n = 4) and Gr VI (n = 4)--EB + P4 (EB 400 microg x day(-1) from 1st to 3rd day, 20 microg x day(-1) at 6th and 9th day, 50 microg at 12th day plus P4 10 to 100 mg from 4th to 15th day). All gilts were injected with oxytocin (OT; 20 IU; i.v.) on the following days of the experiment: 13th (Gr I and Gr II), 15th (Gr III and Gr IV), 16th (Gr V) and 18th (Gr VI). Concentrations of the PGF2alpha metabolite--PGFM were determined in blood samples, collected from 30 min before to 120 min after OT injection. Baseline PGFM concentrations (30 min before OT) differed among treatment groups and were the highest in Gr V and Gr VI (P < 0.01 vs. other groups). The magnitude of the PGFM response to OT increased only in four of the five gilts of Gr IV and in three of the four gilts of Gr VI, and it was higher (P = 0.009) in Gr VI than in Gr IV. In the remaining groups, PGFM concentrations did not increase above the baseline in response to OT. The day after OT injection, oxytocin receptors (OTR) were found in the uterine tissues of all animals studied. The lowest OTR concentrations were in Gr I--75.5 +/- 11.2 fmol x mg protein(-1) and the highest in Gr IV--712.9 +/- 86.7 fmol x mg protein(-1); (P < 0.05 vs. other groups). The values of K of OTR differed among groups (P < 0.001) and ranged from 1.62 +/- 0.44 nM in Gr I to 12. 08 +/- 1.9 nM in Gr VI. A positive correlation (r = 0.54; P < 0.01) between plasma E2 and uterine OTR concentrations was observed. In conclusion, E2 and P4 are involved in both PGF2 synthesis/secretion and OTR formation, however, full PGF response to OT does not develop before puberty. Estrogens are evident stimulators of uterine OTR synthesis ingilts.  相似文献   

3.
This experiment tested the hypothesis that opioid antagonists could influence the timing of the onset and progress of parturition in the pig. Primiparous pigs (gilts) received a jugular catheter on Days 104 to 106 of pregnancy. At 1400 h on Day 112 the gilts received 10 mg PGF2alpha, i.m. to induce parturition. At 1000 h on Day 113 (i.e., 20 h later) gilts received either saline (n=6), 1 mg/kg, i.v. naltrexone (n=4) or 1 mg/kg, i.v. naloxone (n=5). Blood samples were taken daily from Days 108 to 116. On Day 113, blood samples were taken hourly from 0500 to 0900 h and then every 30 min until 2400 h, or until the birth of the last piglet (BLP) (whichever was sooner) and assayed for progesterone, oxytocin (OT), cortisol and PRL. Additional blood samples for OT and cortisol assay were taken every minute from 0930 to 1100 h on Day 113 and for 30 min during parturition. Naloxone, but not naltrexone, delayed the onset of parturition relative to saline controls (by 14 h 21 min; P<0.05). Duration of parturition and rate of births were not significantly affected by treatment. Mean plasma OT increased in the 4 h following naloxone but not saline treatment, during which time OT plasma pulse amplitude was reduced in naloxone and naltrexone-treated animals relative to saline treated controls. The PRL secretion rose following treatment in saline treated animals, consistent with approaching parturition, but failed to rise in opioid antagonist treated animals. Progesterone concentrations remained elevated in naloxone-treated animals for longer than in the other groups. These data suggest that a rapid change in overall effect of parenteral administration of naloxone to parturient pigs occurs from delaying its onset when administered as in these experiments, to facilitating its progress when given during parturition (earlier experiments). The delay of onset of parturition may be mediated by interference with hypothalamic control of OT or PRL release.  相似文献   

4.
The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p < 0.001) in all experimental groups. In the presence of OT and VIP we noted significant increases (p < 0.001) in LH secretion by pituitary cells derived from gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p < 0.001) of LH only after an addition of 100 nM OT. Neuropeptide GnRH did not affect PRL secretion by pituitary cells obtained from gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB (Groups 2 and 3) or P4. In contrast, in OVX gilts primed with placebo, VIP was without any effect on PRL secretion. In conclusion, the results of our in vitro studies confirmed the stimulatory effect of GnRH on LH secretion by porcine pituitary cells and also suggest a participation of OT and VIP in modulation of LH and PRL secretion at the pituitary level in a way dependent on hormonal status of animals.  相似文献   

5.
Oxytocin (OT) is involved in the regulation of luteolysis in pigs. However, it is still not clear if OT is responsible for initiation of luteal regression in this species. The objectives of the study were: (1) to compare OT receptors (OTr) concentrations in endometrium and myometrium of cyclic and early pregnant pigs, (2) to examine the effect of OT on plasma PGF(2)alpha secretion during the progressive luteal regression, (3) to ascertain the effect of OT on inositol phosphates (IPs) accumulation in endometrial and myometrial cells of cyclic and early pregnant pigs. Concentrations of OTr on the endometrium and myometrium of cyclic (n = 33) (days 2-4; 11-13; 14-16; 18-20; day 21) and early pregnant (n = 4) (days 14-16) gilts were determined and they ranged from 7 +/- 3 (days 11-13) to 377 +/- 113 fmol/mg protein (day 21) in the endometrium and from 33 +/- 11 (days 2-4) to 167 +/- 28 fmol/mg protein (days 18-20) in the myometrium. In both tissues, concentrations of OTr were low during the luteal phase and increased (P < 0.01) during the follicular phase. In contrast to myometrial OTr, endometrial OTr during pregnancy were undetectable. In next experiment, mature gilts (n = 12) were injected with OT (20IU; i.v.) for three consecutive days starting on days 14 and 15 of the oestrous cycle and plasma PGF(2)alpha metabolite-13,14-dihydro-16-keto PGF(2)alpha (PGFM) concentration was determined. On days 15-16 and 16-17, OT increased plasma PGFM level. This effect was not observed on days 14-15 of the estrous cycle. A negative correlation was noticed between plasma concentrations of PGFM and progesterone (r = -0.3; P < 0.05). In last experiment, OT (100 nM) augmented (P < 0.01) an accumulation of inositol phosphates (IPs) in isolated myometrial cells on days 14-16 (n = 4) and 18-20 (n = 3) of the estrous cycle and on days 14-16 (n = 4) of pregnancy. Oxytocin-stimulated accumulation of IPs was not observed in endometrial cells. In summary: (1) concentrations of OTr on both the endometrium and myometrium were the highest during perioestrus-period in pigs, (2) myometrium of early pregnant sows possessed functional OTr, (3) oxytocin increased plasma PGFM concentration after initiation of luteolysis; and (4) OT-stimulated accumulation of IPs in myometrial, but not in endometrial cells. In conclusion, OT appears to not be involved in the initiation of luteal regression in sows and functional OTr are still present in the myometrium during early pregnancy (days 14-16).  相似文献   

6.
To determine the effects of cortisol concentrations during pregnancy, gilts, made pseudopregnant through twice daily administration of 5 mg estradiol benzoate on Days 11 to 15 (Day 0 = first day of estrus), received either 5 mg/kg body weight of hydrocortisone acetate (HA) in sesame oil (n=5) or sesame oil alone (n=6) twice daily on Days 21 to 30. Blood samples (20 ml) were collected on Days 11, 21 and 31. Uterine flushings were obtained surgically on Day 31. The HA-treated gilts had higher (P<0.01) plasma cortisol (295.7 vs 35.6 ng/ml) and lower (P<0.01) plasma progesterone (8.9 vs 17.8 ng/ml) concentrations than did controls. Uterine flushings recovered from HA-treated gilts had significantly (P<0.01) higher cortisol (9.9 vs 5.6 ng/ml), lower progesterone (2.1 vs 6.8 ng/ml) and lower total protein (8.3 vs 21.4 mg/ml) levels than the control animals. Cortisol measured in the uterine flushings of the gilts was more than 85% unbound. Plasma corticosteroid binding globulin binding capacity was lower (P<0.05) in HA-treated gilts (7.4 nmol/l) than in the control (38.7 nmol/l) animals on Day 31. Corpora lutea (CL) number and weight were lower (P<0.05) in HA-treated than control gilts. However, progesterone concentration per CL did not differ between the 2 groups. These results indicate that elevated cortisol levels can alter endocrine and uterine functions related to pregnancy using the pseudopregnant gilt as a model.  相似文献   

7.
Two experiments were conducted to determine the responsiveness of salivary and plasma cortisol to acute (i.v.), depot (i.m.) and chronic (repeated i.m.) adrenocorticotropin (ACTH) administration in swine. In Experiment 1, barrows (castrated pigs) were assigned to one of three injection treatments: (1) saline i.m. (SHAM1, n=2); (2) 0.75 IU/kg BW ACTH in saline i.v. (ACUTE, n=2); (3) 2.25 IU/kg BW ACTH in gel i.m. (DEPOT, n=3). Total cortisol concentrations were determined for concurrent saliva and blood samples. Correlations between salivary and plasma cortisol within treatments were: SHAM1, r=0.60; ACUTE, r=0.58; DEPOT, r=0.79. In Experiment 2, barrows were assigned to one of two injection treatments: (1) gel i.m. (SHAM2, n=3); (2) 2.25 IU/kg BW ACTH in gel i.m. (CHRONIC, n=4). The injections occurred every 6 h for a total of eight injections. Concurrent saliva and blood samples were obtained every 3 h for 72 h followed by an increasing sampling interval until day 6. Overall correlations between salivary and plasma cortisol were: SHAM2, r=0.30 and CHRONIC, r=0.61. Experiment 1 found that the relationship between salivary and plasma cortisol was stronger during longer (DEPOT) than shorter (ACUTE) ACTH stimulation. Experiment 2 found a strong relationship between the two measurements during chronic ACTH stimulation, but that relationship weakened after ACTH stimulation ceased.  相似文献   

8.
The direct effects of alpha- and beta-adrenergic agents on luteinizing hormone (LH) secretion in vitro by porcine pituitary cells and the participation of secondary messengers, adenosine 3'5'-monophosphate (cAMP) and guanosine 3'5'-monophospate (cGMP), in transduction of signals induced by adrenergic agents and gonadotropin-releasing hormone (GnRH) in these cells have been investigated. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) 1 month before slaughter. OVX gilts, assigned to four groups, were primed with: (1) vehicle (OVX); (2 and 3) estradiol benzoate (EB; 2.5mg/100kg b.w.) at 30-36h (OVX+EB I) or 60-66h (OVX+EB II) before slaughter, respectively; (4) progesterone (P(4); 120mg/100kg b.w.) for 5 consecutive days before slaughter (OVX+P(4)). Anterior pituitaries were dispersed with trypsin and then pituitary cells were cultured (10(6) per well) in McCoy's 5a medium containing horse serum (10%) and fetal calf serum (2.5%) for 3 days, at 37 degrees C and under the atmosphere of 95% air and 5% CO(2). On day 4 of the culture, the cells were submitted to 3.5h incubation in the presence of GnRH (a positive control), alpha- and beta-adrenergic agonists (phenylephrine (PHEN) and isoproterenol (ISOP), respectively), and alpha- and beta-adrenergic blockers (phentolamine (PHENT) and propranolol (PROP), respectively). The culture media were assayed for LH (experiment I) and cyclic nucleotides (experiment II).In experiment I, addition of GnRH (100ng/ml) increased LH secretion by pituitary cells taken from gilts of all experimental groups. The effects of alpha- and beta-adrenergic agents on LH secretion by the cells depended on hormonal status of gilts. The LH secretion by pituitary cells of OVX gilts was potentiated in the presence of PHEN (10, 100nM, and 1microM) and PHENT (1microM), alone or in combination with PHEN (100nM) and by the cells derived from OVX+EB I and OVX+P(4) animals in response to PHEN (100nM) and ISOP (1microM). ISOP (1microM) also stimulated LH secretion by the cells taken from OVX+EB II gilts. In experiment II, GnRH (100ng/ml) increased cGMP production by pituitary cells obtained from all groups of gilts and cAMP secretion by the cells taken from OVX and OVX+P(4) animals. PHEN (100nM) decreased and PROP (1microM) enhanced cAMP production by pituitary cells derived from OVX+EB I and OVX gilts, respectively. Moreover, PHEN (100nM) reduced, while PHENT (1microM) stimulated the release of cGMP by pituitary cells taken from OVX+EB II animals. In turn, ISOP (100nM) decreased and increased cGMP production by the cells derived from OVX+EB II and OVX+P(4) gilts, respectively. PROP (1microM) potentiated cGMP accumulation by pituitary cells taken from OVX+EB I and OVX+P(4) animals.In conclusion, our results suggest that adrenergic agents can modulate LH release by porcine pituitary cells acting through guanyl and adenylyl cyclase and in a manner dependent on hormonal status of gilts.  相似文献   

9.
The induction of optimal synchrony of estrus in cows requires synchronization of luteolysis and of the waves of follicular growth (follicular waves). The aim of this study was to determine whether hormonal treatments aimed at synchronizing follicular waves improved the synchrony of prostaglandin (PG)-induced estrus. In Experiment 1, cows were treated on Day 5 of the estrous cycle with saline in Group 1 (n = 25; 16 ml, i.v., 12 h apart), with hCG in Group 2 (n = 27; 3000 IU, i.v.), or with hCG and bovine follicular fluid (bFF) in Group 3 (n = 21; 16 ml, i.v., 12 h apart). On Day 12, all cows were treated with prostaglandin (PG; 500 micrograms cloprostenol, i.m.). In Experiment 2, cows were treated on Day 5 of the estrous cycle with saline (3 ml, i.m.) in Group 1 (n = 22) or with hCG (3000 IU, i.v.) in Group 2 (n = 20) and Group 3 (n = 22). On Day 12, the cows were treated with PG (500 micrograms in Groups 1 and 2; 1000 micrograms in Group 3). Blood samples for progesterone (P4) determination were collected on Day 12 (Experiment 1) or on Days 12 and 14 (Experiment 2). Cows were fitted with heat mount detectors and observed twice a day for signs of estrus. Four cows in Experiment 1 (1 cow each from Groups 1 and 2; 2 cows from Group 3) had plasma P4 concentrations below 1 ng/ml on Day 12 and were excluded from the analyses. In Experiment 1, cows treated with hCG or hCG + bFF had a more variable (P = 0.0007, P = 0.0005) day of occurrence of and a longer interval to estrus (5.9 +/- 0.7 d, P = 0.003 and 6.2 +/- 0.8 d, P = 0.005) than saline-treated cows (3.4 +/- 0.4 d). The plasma P4 concentrations on Day 12 were higher (P < 0.0001) in hCG- and in hCG + bFF-treated cows than in saline-treated cows (9.4 +/- 0.75 and 8.5 +/- 0.75 vs 4.1 +/- 0.27 ng/ml), but there was no correlation (P > 0.05) between plasma P4 concentrations and the interval to estrus. In Experiment 2, cows treated with hCG/500PG and hCG/1000PG had a more variable (P = 0.0007, P = 0.002) day of occurrence of and a longer interval to estrus (4.2 +/- 0.4 d, P = 0.04; 4.1 +/- 0.4 d, P = 0.03) than saline/500PG-treated cows (3.2 +/- 0.1 d). The concentrations of plasma P4 on Days 12 and 14 of both hCG/500PG- and hCG/1000PG-treated cows were higher (P < 0.05) than in saline/500PG-treated cows (7.3 +/- 0.64, 0.7 +/- 0.08 and 7.7 +/- 0.49, 0.7 +/- 0.06 vs 5.3 +/- 0.37, 0.5 +/- 0.03 ng/ml). The concentrations of plasma P4 on Days 12 or 14 and the interval to estrus were not correlated (P > 0.05) in any treatment group. The concentrations of plasma P4 on Days 12 and 14 of hCG/500PG- or hCG/1000PG-treated cows were correlated (r = 0.65, P < 0.05; r = 0.50, P < 0.05). This study indicated that treatment of cows with hCG on Day 5 of the estrous cycle reduced the synchrony of PG-induced estrus and that this reduction was not due to the failure of luteal regression.  相似文献   

10.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

11.
Embryonic survival after administration of oxytocin (OT) was examined in 42 beef cows. All cows were bred (Day 0) and randomly assigned to receive either 25 mL saline (CON; n = 10), 100 IU OT + 20 mL saline (OT; n = 12), 100 IU OT + 1 g flunixin meglumine (OT + FM; inhibitor of prostaglandin endoperoxide synthase; n = 10), or 100 IU OT + lutectomy (OT + LUT; n = 10) administered (i.m.) at 8-h intervals on Days 5-8 after mating. Lutectomies were performed by transrectal digital pressure prior to initiation of treatments (0600, Day 5). All cows were fed 4 mg/head/day of melengesterol acetate (an orally administered exogenous progestogen) through Days 3-30 and were bled by jugular venipuncture at 0600 and 0700 h on Day 5 for determination of 13,14-dihydro-15-keto-PGF2a (PGFM). Pregnancy rates, as determined by transrectal ultrasonography at Day 30, were reduced in OT (33.3%) and OT + LUT (30%) groups compared to CON and OT + FM (80%; p < or = 0.03). Number of short cycles were increased in OT (n = 6/12) group compared to CON (n = 0/10; p < or = 0.009) and OT + FM (n = 1/10; p < or = 0.045). Mean change in PGFM from the 0600 to 0700 h bleed was different (p < or = 0.01) between the OT + LUT (31.6 +/- 11.0 pg/mL) group versus CON (-11.2 +/- 10.6 pg/mL) and OT + FM (-13.8 +/- 10.6 pg/mL) groups. Administration of oxytocin appears to decrease embryonic survival by stimulating uterine PGF2a. Thus, previous reports indicating that removal of the corpus luteum during progestogen supplementation and prior to PGF2a administration increases embryonic survival can be explained through interruption of the luteal oxytocin-uterine PGF2a feedback loop.  相似文献   

12.
This study was undertaken to compare the effects of FSH-pituitary (FSH-P), eCG, and a combination of gonadotropins containing 400 IU eCG and 200 IU hCG (PG 600) on the growth of large follicles, oocyte quality and in vitro fertilization (IVF) rate of in vitro matured (IVM) oocytes in prepubertal gilts. The ovaries were removed via midventral laparotomy 48 h (Experiment 1) or 72 h (Experiment 2) after the first injection. In Experiment 1, 30 gilts received 1 of 5 treatments: 1) saline (3 ml i.m., once, n = 6); 2) FSH-P8 (8 mg i.m., twice, with a 24-h interval, n = 6); 3) FSH-P16 (16 mg i.m., twice, with a 24-h interval, n = 6; 4) eCG (1000 IU i.m., once, n = 6); or 5) PG 600 (5 ml i.m., once, n = 6). Compared with saline, treatment with PG 600 or eCG induced significant (P < 0.05) growth of large follicles (> or = 6 mm). In Experiment 2, 16 gilts received 1 of 5 treatments: 1) saline (n = 4); 2) FSH-P8 (n = 4); 3) FSH-P16 (n = 4); 4) eCG (n = 4), or 5) PG 600 (n = 4). The same injection protocol as in Experiment 1 was used. Compared with treatment with FSH-P8 or FSH-P16, eCG increased (P<0.05) the number of large follicles. The proportion of good oocytes was increased (P<0.05) with FSH-P8 or FSH-P16 compared with treatment with eCG or PG 600. Moreover, oocytes from eCG-treated gilts had a greater (P<0.05) rate of male and female pronuclei than FSH-P or saline-treated gilts. In conclusion, treatment with FSH-P resulted in a higher proportion of oocytes with multilayer cumulus cells, whereas treatment with eCG resulted in higher pronuclear rates following in vitro fertilization in prepubertal gilts.  相似文献   

13.
The objective of this study was to determine whether gonadotrophin-releasing hormone (GnRH), oxytocin (OT) and vasoactive intestinal polypeptide (VIP) modulate beta-endorphin-like immunoreactivity (beta-END-LI) secretion by dispersed anterior pituitary cells of pigs and in vivo priming with steroid hormones, estradiol benzoate (EB) and progesterone (P(4)), influences the cell reactivity to peptide hormones tested. Additionally, the aim of this research was to examine the involvement of cyclic nucleotides (cAMP and cGMP) in transduction of signals induced by GnRH, OT and VIP in porcine pituitary cells. Pituitaries were collected from ovariectomized (OVX) gilts that were divided into four experimental groups. Animals of group 1 (OVX) received 1ml corn oil (placebo)/100 kg body weight (b.w.), group 2 (OVX+EB I) and group 3 (OVX+EB II) were treated with EB at the dose 2.5mg/100 kg b.w., 30-36 and 60-66 h before slaughter, respectively. Animals of group 4 (OVX+P(4)) were injected with P(4) at the dose 120 mg/100 kg b.w. for 5 subsequent days before slaughter. Anterior pituitaries were dispersed with trypsin and then pituitary cells were cultured (10(6) per well) in McCoy's 5A medium containing horse serum (10%) and fetal calf serum (2.5%) for 3 days at 37 degrees C under an atmosphere of 95% air and 5% CO(2). Subsequently, plates were rinsed with fresh McCoy's 5A medium and pituitary cells were treated with one of the following agents: GnRH (100 ng/ml), OT (10(-6)M) or VIP (10(-7)M) and incubated for 3.5h at 37 degrees C.GnRH did not affect beta-END-LI secretion by pituitary cells of OVX (group 1) and OVX+P(4) (group 4) gilts. When the pituitary cells were incubated in the presence of OT and VIP, significant increases were observed. After priming of OVX gilts with EB, 30-36 h before slaughter (group 2), we noted a significant increase in beta-END-LI release from pituitary cells only in the presence of VIP. Pituitary cells from gilts treated with EB, 60-66 h before slaughter (group 3), produced markedly elevated amounts of beta-END-LI after GnRH, OT or VIP addition.GnRH markedly stimulated cGMP release from cultured pituitary cells in all experimental groups and significantly increased cAMP production by the cells from OVX, OVX+EB II and OVX+P(4) animals. The addition of OT enhanced both cAMP and cGMP output in all experimental groups of pigs. VIP stimulated cAMP release from pituitary cells derived from OVX, OVX+EB I and OVX+EB II animals. cGMP output was markedly elevated under the influence of VIP from pituitary cells of OVX, OVX+EB II and OVX+P(4) gilts.In conclusion, our results suggest that GnRH, OT and VIP can modulate beta-endorphin release from porcine pituitary cells and imply the involvement of cAMP and cGMP in transduction of signals induced by studied peptides in the cells.  相似文献   

14.
We have developed a sensitive, selective and reproducible reversed-phase high-performance liquid chromatography method coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) for the simultaneous quantification of midazolam (MDZ) and its major metabolite, 1'-hydroxymidazolam (1'-OHM) in a small volume (200 microl) of human plasma. Midazolam, 1'-OHM and 1'-chlordiazepoxide (internal standard) were extracted from alkalinised (pH 9.5) spiked and clinical plasma samples using a single step liquid-liquid extraction with 1-chlorobutane. The chromatographic separation was performed on a reversed-phase HyPURITY Elite C18 (5 microm particle size; 100 mm x 2.1mm i.d.) analytical column using an acidic (pH 2.8) mobile phase (water-acetonitrile; 75:25% (v/v) containing formic acid (0.1%, v/v)) delivered at a flow-rate of 200 microl/min. The mass spectrometer was operated in the positive ion mode at the protonated-molecular ions [M+l]+ of parent drug and metabolite. Calibration curves in spiked plasma were linear (r2 > or = 0.99) from 15 to 600 ng/ml (MDZ) and 5-200 ng/ml (1'-OHM). The limits of detection and quantification were 2 and 5 ng/ml, respectively, for both MDZ and 1'-OHM. The mean relative recoveries at 40 and 600 ng/ml (MDZ) were 79.4+/-3.1% (n = 6) and 84.2+/-4.7% (n = 8), respectively; for 1'-OHM at 30 and 200 ng/ml the values were 89.9+/-7.2% (n = 6) and 86.9+/-5.6% (n = 8), respectively. The intra-assay and inter-assay coefficients of variation (CVs) for MDZ were less than 8%, and for 1'-OHM were less than 13%. There was no interference from other commonly used antimalarials, antipyretic drugs and antibiotics. The method was successfully applied to a pharmacokinetic study of MDZ and 1'-OHM in children with severe malaria and convulsions following administration of MDZ either intravenously (i.v.) or intramuscularly (i.m.).  相似文献   

15.
The effects of porcine relaxin (3000 units/mg) on oxytocin (OT) and progesterone secretion were studied in beef heifers on Day 274 (10 days before expected parturition). Heifers (n = 11) were randomly assigned to three treatments: relaxin iv infusions combined with im injection (RLX-INF, 9000 units), relaxin im injection (RLX-im, 6000 units), and phosphate-buffered saline-treated controls (PBS). RLX-INF heifers received infusions of PBS and 1000 units of relaxin for 165 min, followed by 2000 units of relaxin im and finally 2000 units of relaxin infusion followed by 4000 units of relaxin im. Endogenous relaxin (immunoreactive) in the PBS-treated group was 0.2-0.9 ng/ml peripheral plasma. For the RLX-im group, peak relaxin was 81 +/- 12 ng/ml (+/- SE) at 45 min after treatment. There were two peaks of relaxin, 18 +/- 5.3 ng/ml and 74 +/- 7.5 ng/ml, 3.5-4.5 hr apart in the RLX-INF group. Significant peak releases of OT were evident in the relaxin-treated heifers. For the RLX-im group, an OT peak (42 +/- 16 pg/ml) occurred within 30 min after relaxin treatment. For the RLX-INF heifers, 2000 and 4000 units of relaxin were associated with major peaks of 14 +/- 0.5 and 43 +/- 1.7 pg/ml OT, respectively. Basal OT plasma levels in the PBS group were 2.5-3.1 pg/ml. Mean plasma progesterone for all heifers was 6.2 +/- 2.11 ng/ml before treatment. There was a significant decrease in progesterone (-2.5 ng/ml) in the RLX-im group within 60 min after relaxin treatment and 45 min after peak OT secretion. The maximum decrease in progesterone (-3.2 +/- 0.68 ng/ml) occurred 135 min after treatment in the RLX-im group. In the RLX-INF group, 2000 units of relaxin infusion combined with 4000 units of relaxin im significantly decreased progesterone (-3.2 +/- 1.59 ng/ml) in peripheral plasma. These results clearly indicate that relaxin causes an acute peak release of oxytocin within 30 min, followed by a marked decrease in plasma progesterone concentration in late-pregnancy cattle.  相似文献   

16.
In order to assess the response of plasma biochemical parameters to anaesthesia, 40 New Zealand White (NZW) rabbits were assigned to four treatment groups (n = 10): control (1 ml i.v. saline solution), fentanyl-droperidol (FD) (0.4 ml/kg s.c. of 'thalamonal' solution; 2.5 mg/ml droperidol, 0.05 mg/ml fentanyl), ketamine (K) (10 mg/kg i.v.) with either xylazine (X) (3 mg/kg i.v.) or diazepam (D) (2 mg/kg i.v.). Blood samples were obtained from the central ear artery at six time points: before injection, and at 10, 30, 60, 120 min and 24 h after injection of the anaesthetics/saline. Plasma ALT, AST, ALP, GGT, BUN, creatinine, phosphate and potassium levels were measured by the Hitachi 747 autoanalyser. The administration of K-X increased (P < 0.05) plasma ALT (from 11.4 +/- 0.9 to 20.2 +/- 1.7 IU/l, at 10 min), AST (from 10.5 +/- 3.3 to 34 +/- 2.1 IU/l, at 120 min), BUN (from 17.2 +/- 0.9 to 25.8 +/- 1.8 mg/dl, at 60 min) and creatinine concentrations (from 1 +/- 0.1 to 1.6 +/- 0.2 mg/dl, at 10 min). After K-D administration, we observed an increase (P < 0.05) in plasma ALT (from 11.4 +/- 0.9 to 20.2 +/- 1.1 IU/l, at 10 min), AST (from 11.4 +/- 1.6 to 28 +/- 3.7 IU/l, at 10 min), BUN (from 15.8 +/- 0.8 to 30 +/- 1.5 mg/dl, at 10 min) and creatinine levels (from 1 +/- 0.08 to 2.2 +/- 0.2 mg/dl, at 120 min). No significant changes were seen in the FD group. We conclude that K-X and K-D may affect plasma concentration of select serum enzymes and biochemical parameters. These results should be taken into account when blood samples are evaluated in treated rabbits.  相似文献   

17.
The objective was to compare in the ewe the effects of easy and difficult procedures for artificial insemination (AI) (as related to rapid or poor accessibility of the cervix, respectively) on plasma cortisol (CORT) and oxytocin (OT), and uterine motility. All AI were simulated using a catheter empty of semen to study genital and environmental stimuli only. In experiment 1, 40 ewes were sampled after Al, and whether it was an easy or difficult procedure was reported for each animal. While CORT concentrations rose to a similar amount in all ewes, whatever the Al procedure, a significant OT response occurred after a difficult procedure only (n = 18) (17.4 +/- 1.7 versus 12.7 +/- 0.7 pg x mL(-1) before Al, p < 0.05). In experiment 2, uterine activity was monitored in 4 ewes using an implantable telemetric transmitter equipped with an intrauterine pressure catheter. An increased uterine activity occurred during 2 +/- 1 min after an easy Al (n = 5), whereas the evoked activity lasted for 15 +/- 4 min after a difficult Al (p < 0.001, n = 7). A similar long-lasting response occurred after OT administration (100 mIU, i.v.). We concluded that the increase in uterine motility after a difficult Al resulted from a reflex release of OT, and not to a "stress" effect.  相似文献   

18.
The effect of pregnancy on the release of prostaglandin F2 alpha (PGF2 alpha) in response to oxytocin (OT) has been examined. Fourteen cyclic heifers received one intravenous injection of 1 IU OT (n = 6) or 100 IU OT (n = 8) 17, 18, or 19 days (Day 17-19) after the onset of estrus (Day 0). Five of these animals also received 100 IU OT at Days 6 and 13 to determine the effect of OT at different times of the cycle. Frequent blood samples were taken for 60 min before and for 90 min after OT injection for the measurement of 15-keto-13,14-dihydro-PGF2 alpha (PGFM) by radioimmunoassay. The experiment was then repeated using the same animals at Day 17-19 of pregnancy (confirmed by the recovery of an embryo the day after OT injection). Following the injection of 1 IU OT, plasma PGFM reached its peak within 30 min with the increase significantly lower (P less than 0.05) in pregnant (1.13 +/- 0.10-fold) than in nonpregnant animals (2.07 +/- 0.27-fold). However, because only 3 of the 6 cyclic animals showed a response to 1 IU OT, the dose was increased to 100 IU in subsequent experiments. The animals that received 100 IU at Days 6 and 13 had no significant increase in PGFM concentrations (1.18 +/- 0.05-fold and 1.01 +/- 0.04-fold, respectively). At Day 17-19 the increase in plasma PGFM reached its peak 5-15 min after 100 IU OT and the increase was significantly greater in nonpregnant (3.23 +/- 0.17-fold) than in pregnant (1.21 +/- 0.02-fold; P = 0.003) heifers. Six of 11 animals injected at Day 17-19 of the cycle showed a decrease in progesterone (P4) the day after OT administration. These data show that the release of PGF2 alpha in response to OT is suppressed in pregnant animals in vivo, suggesting an antiluteolytic role for the embryo in luteostasis.  相似文献   

19.
The effect of adrenocorticotropic hormone (ACTH) administration on plasma cortisol concentrations was determined in pregnant gilts and their fetuses. In a first experiment, 100 IU ACTH (Synacthen Depot) was administered intramuscularly to the gilts every second day from Days 49 to 75 of gestation. ACTH injections were carried out at 08:00 h and, thereafter, 10 blood samples were taken within the following 8h via jugular catheters. Blood samples were analysed for plasma cortisol concentrations, and results were compared with values from animals which were treated with physiological saline and untreated animals (blood sampling only). The values for plasma cortisol concentrations increased until 3h after ACTH applications to a mean maximum level of 276.5+/-17.2 nmol/l in the whole 4-week stimulation period. Plasma cortisol levels did not return to pre-treatment values within the 8 h post-injection. No differences in cortisol levels were found between the physiological saline and untreated control, and no habituation of the adrenocortical response to ACTH was found during the 4-week stimulation period. In a second experiment, 100 IU ACTH were administered to pregnant gilts at gestation Day 65. After 3 h, fetuses were recovered under general anaesthesia and blood samples were taken from the umbilical vein, artery, and, after decapitation, from periphery. Application of ACTH to the sows significantly increased their plasma cortisol concentrations (P<0.001), and also increased plasma cortisol concentrations in peripheral blood samples from the fetuses (P=0.09) and in the umbilical vein (P<0.001) and artery (P<0.01), respectively. Plasma ACTH concentrations did not differ in fetuses from ACTH-treated or control sows. The results show that in gilts the adrenocortical response to an exogenous application of Synacthen Depot is consistent over time during mid-gestation. Furthermore, cortisol but not ACTH levels were increased in fetuses from ACTH-treated sows, indicating that maternal cortisol can cross the placenta during mid-gestation. The stimulation of maternal cortisol release through exogenous ACTH with subsequent elevation of fetal cortisol levels is, therefore, a useful approach for studying effects of elevated maternal glucocorticoids in prenatal stress studies in pigs.  相似文献   

20.
This experiment was conducted to compare the negative effects of charcoal-extracted porcine follicular fluid (pFF) and the positive effects of purified porcine follicle-stimulating hormone (pFSH) on growth of follicles and on plasma hormone concentrations. Twenty gilts were fed altrenogest for 18 days (20 mg.day-1.gilt-1) to suppress spontaneous growth of large follicles (greater than 6 mm in diameter). Gilts, assigned at random to receive pFF and pFSH administered in a 2 x 2 factorial arrangement, were injected 9 times at 8-h intervals starting 48 h before the last feeding of altrenogest and ending 8 h before slaughter (24 h after the last feeding of altrenogest). Blood was collected periodically through vena cava catheters. Treatment groups and mean number of medium follicles (3 to 6 mm in diameter)/gilt at necropsy were 1) 20 ml of charcoal-extracted porcine serum i.v. + 4 ml saline i.m., 30.8; 2) 20 ml of pFF i.v. + saline i.m., 0.2; 3) serum i.v. + 8 micrograms of pFSH (USDA-pFSH-B1)/kg BW in saline i.m., 59.0; and 4) pFF i.v. + pFSH in saline i.m., 36.2. Injections of pFF decreased (p less than 0.01) and injections of pFSH increased the number of medium follicles, and the interaction of pFF and pFSH was not significant. Plasma FSH decreased (p less than 0.01) during pFF treatment of saline-injected gilts at a rate of 0.29 ng.ml-1.h-1. During pFSH treatment, plasma FSH increased (p less than 0.05) at statistically identical rates of 0.33 and 0.32 ng.ml-1.h-1 in serum- and pFF-injected gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号