首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Solid electrolyte-based electrochemical devices combined with an auxiliary phase of oxyacid salt have, in this decade, emerged as new attractive sensors to detect oxidic gases of CO2, NO, NO2 and SO2. Various combinations of solid electrolytes and auxiliary phases as well as various new single or multi-component auxiliary phases have been exploited to improve the gas sensing properties and stability of these devices. Some of the potentiometric sensors developed e.g., CO2 sensors using NASICON and Li2CO3-CaCO3, NO2 sensors using NASICON and NaNO2-Li2CO3 and SO2 sensors using MgO-stabilized zirconia and Li2SO4-CaSO4-SiO2, exhibit excellent gas sensing performances in laboratory tests and appear to be promising for monitoring the respective gases in ambient environments and/or combustion exhausts. This paper aims at describing our exploratory works on and the state of the art of these potentiometric gas-sensing devices.  相似文献   

2.
Current status of capacitive type gas sensor were reviewed in this paper. Although the number of publications on capacitive type sensors has been limited so far, capacitive type sensors have good prospects given that the capacitor structure is so simple enabling miniaturization and achieving high reliability and low cost. Among the reported capacitive type sensors, detection of gas based on a change in dielectric layer thickness is most promising. On this point of view, capacitive type CO2 and NO sensors using depletion layer formed at p-n junction of oxide semiconductor were introduced in detail. In addition, commercial capacitive type sensors for monitoring CO2 based on this principle were mentioned. CO2 concentration in office can be successfully monitored by the developed capacitive type CO2 sensor.  相似文献   

3.
This paper presents properties of saw acoustic wave (SAW) gas sensors to detect volatile gases such as acetone, methanol, and ethanol by measuring phase shift. A dual-delay-line saw sensors with a center frequency of 100 MHz were fabricated on 128 Y-Z LiNbO3 piezoelectric substrate. In order to improve sensitivity of SAW sensors, a thin titanium (Ti) film as mass sensitive layer was deposited using e-beam evaporation on the surface of the SAW sensors. In our investigation the response time and sensitivity of SAW sensors were measured. The response time and sensitivity of SAW sensor with thin Ti film were strongly improved because of changing electrical and mechanical properties in the mass sensitive layer. As a result, high sensitivity and fast response time could be achieved by deposition of thin Ti film as mass sensitive layer on the surface of SAW sensor. It can be applied for high performance electronic nose system by assembling an array of different sensors.  相似文献   

4.
This paper describes the characteristics of chemiresistor hydrogen (H2) sensors with different ZnO film structures in which ZnO dense films, nanoparticles (NPs), and nanorods (NRs) were prepared by RF magnetron sputtering, the sol–gel method, and the hydrothermal method, respectively. These were decorated with a Pt NP catalyst to investigate the performance of devices comprised of these structures. The effects of the ZnO morphology and operating temperature on the gas sensing behavior of the sensor are reported in detail. The various ZnO film morphologies, which contributed significantly to differences between sensors, play a very important role in enhancement of the supported Pt catalyst area and initial oxygen absorption on the ZnO surface. ZnO dense films prepared by sputtering showed the fastest response with a 13.5 % resistance variation at 1,000 ppm H2 because gas adsorption occurred only on the film surface. The sensor with ZnO NRs showed a slower response, but the highest change in resistance of 65.5 % occurred at 1,000 ppm H2 at room temperature. H2 sensing performance of the chemiresistor sensors was improved due to the Pt catalyst, which was more efficient in dissociating H2 gas molecules even at low temperature. The best chemiresistor sensor was fabricated using ZnO NRs and had a response time of approximately 10 s, a 27 s recovery time, and an 81.5 % change in resistance at 200 °C.  相似文献   

5.
Potentiometric CO2 sensors were fabricated using a NASICON (Na1+x Zr2SixP3−x O12) thick film and auxiliary layers. The powder of a precursor of NASICON with high purity was synthesized using the sol-gel method. Using the NASICON paste, an electrolyte was prepared on the alumina substrate through screen printing and then sintered at 1000C for 4 h. In the present study, as new auxiliary phases, a series of Na2CO3-CaCO3 system was deposited on the Pt sensing electrode. The electromotive force (EMF) values were found to be linearly dependent on the logarithm of the CO2 concentration in the range of 1000–10000 ppm. The device to which Na2CO3-CaCO3 (1:2) was attached showed good sensing properties at low temperatures.  相似文献   

6.
Abstract

In the present work efforts have been made to develop microheater integrated gas sensors with low power consumption. The design and simulation of a single-cell microheater is carried out using ANSYS. Low power consumption (<35?mW) platinum micro-heater has been fabricated using bulk micromachining technique on silicon dioxide membrane (1.5?μm thin), which provided improved thermal isolation of the active area of 250?×?250?μm2. The micro-heater has achieved a maximum temperature of ~950?°C at an applied dc voltage of 2.5 V. Fabricated mircro-heater has been integrated with SnO2 based gas sensors for the efficient detection of H2 and NO2 gases. The developed sensors were found to yield the maximum sensing response of ~184 and ~2.1 with low power consumption of 29.18 and 34.53?mW towards the detection of 1?ppm of NO2 gas and 500?ppm of H2 gas, respectively.  相似文献   

7.
Langasite (La3Ga5SiO14) has proven to be a viable piezoelectric material for use in high temperature bulk acoustic wave gas sensors. To detect changes in pO2 under oxidizing conditions, we utilized a PLD deposited Pr0.15Ce0.85O2 – film as the gas sensitive layer given its ready reduction under these conditions. The sensor was operated at 600C and showed strong sensitivity to changes in oxygen partial pressure, saturating at a frequency shift of –360 Hz below 1%O2/Ar (pO2 = 103 Pa). The frequency shift was calculated to be too large to be solely accounted for by the corresponding change of mass in the PCO film. Stress induced by dilation of the PCO lattice upon reduction is viewed as being a likely source of sensor sensitivity.  相似文献   

8.
MEMS structures for micro gas sensors had advantage for lower power consumption, reducing size, and easily making cavity structures. Also, co-planar type MEMS structures (CPMS) for gas sensors with low power consumption heater and dispensed sensing materials were newly proposed and investigated. CPMS, which were formed with micro heater and sensing electrodes at the same layer, to reduce process steps, diffusions between upper layer and lower layer, and thermal differences between the center and the periphery of the sensing layer compared with stacked structure. Dispensing method guided by back-side etched well was good for forming sensing material on sensing electrode and had advantage that various sensing materials could be applied for array type sensors. CPMS were fabricated on four-inch diameter and double side polished (100) silicon wafers and using anisotropic bulk silicon micromachining for membrane formation and etched well. A size of chips with 1.15 mm × 1.15 mm membrane was 4.8 mm × 4.8 mm. And co-planar type sensing electrodes were located in the middle of low stress SiO2/Si3N4 (400 nm /1 μm) membranes. Membranes are thermally isolated from the chip frame because they have low thermal conductivity, generally. Temperatures were measured using IR thermometer with linearly increasing applied power. Power consumption at 400C was 150 mW. Membranes of CPMS were withstood up to 730C at the power of 350 mW. Characteristics of micro heaters for various heater widths of 50 μm, 75 μm, 100 μm and ratios of membrane dimension to heater dimension were measured. Sensing materials guided by micromachined well were dispensed on sensing electrodes. CPMS were mounted on a TO-8 package. From these results, fabricated and characterized CPMS could be used for applications in portable gas sensors for detection of CO, NOx, CHx, H2S, and so on.  相似文献   

9.
A low operating temperature CO (carbon monoxide) sensor was fabricated from a nanometer-scale SnO2 (tin oxide) powder. The SnO2 nanoparticles in a size range 10–20 nm were synthesized as a function of surfactant (tri-n-octylamine, TOA) addition (0–1.5 mol%) via a simple thermal decomposition method. The resulting SnO2 nanoparticles were first screen-printed onto an electrode patterned substrate to be a thick film. Subsequently, the composite film was heat-treated to be a device for sensing CO gas. The thermal decomposed powders were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and surface area measurements (BET). The CO-sensing performance of all the sensors was investigated. The experimental results showed that the TOA addition significantly decreased the particle size of the resulting SnO2 nanoparticle. However, the structure of the powder coating was crucial to their sensing performance. After heat-treatment, the smaller particle tended to cause the formation of agglomeration, resulting in the decline of surface area and reducing the reaction site during sensing. However, the paths for the sensed gas entering between the agglomerated structure may influence the sensing performance. As a CO sensing material, the SnO2 nanoparticle (~12 nm in diameter) prepared with 1.25 mol% TOA addition exhibited most stable electrical performance. The SnO2 coating with TOA addition >0.75 mol% exhibited sensor response at a relatively low temperature of <50°C.  相似文献   

10.
Preparation of CuO-BaTiO3 mixed oxide thin film by the decomposition of a self-assembled multibilayer film as a molecular template was investigated in this study. Furthermore, CO2 sensing property of the resultant thin film was investigated as a capacitive type sensor. The self-assembled bilayer film of few 1000 layers thickness can be obtained easily by casting an aqueous suspension consisting of dimethyldihexadecylammoiun bromide (DC1-16), Cu(ClO4)2, Ba(TiO(C2H4)2), 2,6-dimetyle-3,5heptadione (DHP), and polyvinyl alcohol. Divalent copper ion (Cu2+)) which is associated with 2 DHP molecules was incorporated into the molecular bilayer film and BaTiO3 precursor exists at the interspace of molecular bilayer film by coordinating with polyvinyl alcohol. Upquenching the organic-inorganic film at 1173 K leads to the uniform film of CuO-BaTiO3 oxide mixture. Although operating temperature shifted to higher temperature, the resultant film exhibits the capacitance change upon exposure to CO2. Consequently, it is concluded that the mixed oxide film of CuO-BaTiO3 prepared by the decomposition of multibilayer film was also an appropriate capacitive type CO2 sensor.  相似文献   

11.
Preparation of CuO-BaTiO3 mixed oxide thin film by the decomposition of a self-assembled multibilayer film as a molecular template was investigated in this study. Furthermore, CO2 sensing property of the resultant thin film was investigated as a capacitive type sensor. The self-assembled bilayer film of few 1000 layers thickness can be obtained easily by casting an aqueous suspension consisting of dimethyldihexadecylammoiun bromide (DC1-16), Cu(ClO4)2, Ba(TiO(C2H4)2), 2,6-dimetyle-3,5heptadione (DHP), and polyvinyl alcohol. Divalent copper ion (Cu2+)) which is associated with 2 DHP molecules was incorporated into the molecular bilayer film and BaTiO3 precursor exists at the interspace of molecular bilayer film by coordinating with polyvinyl alcohol. Upquenching the organic-inorganic film at 1173 K leads to the uniform film of CuO-BaTiO3 oxide mixture. Although operating temperature shifted to higher temperature, the resultant film exhibits the capacitance change upon exposure to CO2. Consequently, it is concluded that the mixed oxide film of CuO-BaTiO3 prepared by the decomposition of multibilayer film was also an appropriate capacitive type CO2 sensor.  相似文献   

12.
Abstract

In the present work, an efficient NO2 gas sensor has been realised using single phase Barium titanate, BaTiO3, (BTO) thin film, grown by chemical solution deposition technique (CSD). The gas sensing characteristics of BTO thin film were enhanced by integrating WO3 modifier in the form of uniformly distributed circular nano-clusters and continuous overlayer. The WO3 nanoclusters/BTO sensing element exhibited enhanced sensor response (~156) with fast response speed (16?s) at a relatively low operating temperature (140?°C) towards 50?ppm NO2 gas. An attempt has been made to explain the sensing mechanism involving the twin effect of “Fermi-level exchange mechanism” and “spill over mechanism” upon interaction with target NO2 gas. The obtained results in the present work are encouraging for the realization of hand-held NO2 gas sensor.  相似文献   

13.
TiO2 thin films with nanorods grown on 128° Y?cut LiNbO3 and 90° rotated 42°45′ ST?cut quartz were used to fabricate surface acoustic wave ultraviolet photodetectors. TiO2 thin film was deposited by radio?frequency magnetron sputtering and TiO2 nanorods were then synthesized on the thin film via the hydrothermal method. 128° Y?cut LiNbO3 is a Rayleigh wave substrate with a high electromechanical coupling coefficient, whereas 90° rotated 42°45′ ST?cut quartz is a surface skimming bulk wave substrate with a high wave velocity. The effects of substrate characteristics and TiO2 nanorod morphology on the ultraviolet sensitivity of the surface acoustic wave photodetectors were investigated. The variations of insertion loss, phase, resistance, and capacitance under ultraviolet illumination were examined. The performance of the TiO2 thin film with nanorods deposited on 128° Y?cut LiNbO3 is much greater than that of the film deposited on 90° rotated 42°45′ ST?cut quartz, which can be attributed to the former’s high electromechanical coupling coefficient.  相似文献   

14.
Practical small-sized thick film CO2 sensor with self-heater was fabricated with Na β -Alumina (NBA), Na2Ti6O13-TiO2, and Na2CO3 as a solid electrolyte, reference electrode, and a sensing electrode, respectively. The measured EMF from the sensor followed the Nernstian behavior with CO2 concentration change in the range of 400 to 600C (350–580 mW power consumption). However, in the aspect of stability, densification of the NBA thick film and prevention of Na2CO3 evaporation were needed. In this study, an Al2O3 porous layer deposited on Na2CO3 was effective in improving the durability during operation of the sensor. It is thought that Al2O3 suppresses evaporation of Na2CO3.  相似文献   

15.
ABSTRACT

We have fabricated high sensitive gas sensor based on piezoelectrically driven micro-diaphragm transducers. The micro-diaphragm transducer was fabricated using micro-electro-mechanical-system (MEMS) technique. The diol based sol-gel derived Pb(Zr0.52,Ti0.48)O3(PZT) film was used as a piezoelectric actuating layer. We have used the resonant frequency change of micro-diaphragm transducer upon mass increase as a sensing signal. The resonant frequency values were measured by analysis of electrical signals from the micro-diaphragm transducer. The fundamental resonant frequency of the micro-diaphragm was in the range of 250 to 360 kHz, depending on their physical boundary conditions. The mass sensitivity of bare micro-diaphragm transducer was 66.5 Hz/ng. Two polymer sensing layers such as the polymethylmethacrylate (PMMA) and polydimethylsiloxane (PDMS) films were used to estimate the gas sensing behavior of microtransducers for various vapors of organic compounds. PMMA was used to detect primary alcohols while PDMS was used for toluene and benzene. The resonant frequency of micro-diaphragm transducer was shifted toward lower frequency range as the vapor concentration increased. With PMMA gas sensing layer, the micro-diaphragm showed a gas sensitivity of 0.456 Hz/ppm for ethanol vapor. When the PDMS gas sensing layer was used, the micro-diaphragm showed a gas sensitivity of 0.143 Hz/ppm for toluene vapor. When the test vapors were removed from the reaction chamber, the resonant frequencies of micro-diaphragm sensors were completely recovered to their initial state.  相似文献   

16.
An organic molecular single-electron transistor (SET) based on a tetracene quantum dot has been modeled and employed for sensing of chlorine gas, within the framework of density functional theory. The sensing behavior of the SET is estimated through a charge-stability diagram and total energy as a function of gate potential (TE vs. Vg) for varying distances of chlorine from the SET quantum dot, which could be used as an electronic fingerprint for detection. The better sensing ability, high power efficiency and large operational temperature range of tetracene SET, in comparison to conventional sensors, makes it a very powerful candidate for a chlorine gas sensor.  相似文献   

17.
X-ray photoelectron spectroscopy (XPS) was used to examine the NO2 adsorption behaviour on the LaFeO3 and Pt electrodes of planar yttria stabilized zirconia non-Nernstian gas sensors. The electrochemical sensors were exposed to the same gas atmosphere containing 1000 ppm NO2 at 650°C. XPS of the as-prepared sensors and sensors after exposure to NO2 revealed bonded nitrogen peaks on the surface of the semiconducting oxide but no nitrogen peaks on the Pt electrode. Therefore, NO2 adsorption on a LaFeO3 electrode plays an important role in the NO2 detection mechanism.  相似文献   

18.
CeO2, Ce(1-x)MXO2, {M = Ru, In} compounds with sensing properties were fabricated using the sol–gel route. The main purpose was to compare the efficiency of CeO2 vs. Ce(1-x)MXO2 doped compounds as gas sensors for NO2 detection. Characterization was performed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and surface area determination (BET). Measurements of electrical resistance under different conditions of time, concentration and temperature in the presence of NO2 were carried out. Ruthenium inclusion increased the CeO2 sensor response in a great extent, gas response (S) = 1.8 for CeO2 vs. gas response (S) = 350 for Ce0.95Ru0.05O2 and gas response (S) = 35 for Ce0.95In0.05O2. This behavior is reported by the first time. Our results demonstrate that ruthenium or indium inclusion has been beneficial for CeO2. Conclusively the materials herein described could be applied as NO2 gas sensors.  相似文献   

19.
A tubular sensor was fabricated by using yttira stabilized zirconia (YSZ) and ZnCr2O4 sensing-electrode (SE) aiming for detection of NOx at high temperature. The sensing characteristics of this YSZ-based sensor were evaluated at 700C by means of potentiometric (mixed-potential) and impedancemetric methods with the variation of thickness of SE. A correlation between the thickness and the sensing performances was obtained for both types of NOx sensors. The mixed-potential-type sensor using ZnCr2O4-SE exhibited high NOx sensitivity when the SE thickness was small (4 μm). On the other hand, the impedancemetric sensor, employing the same oxide-SE, provided almost equal sensitivity to NO and NO2 when the SE thickness was large (39 μm). In this case, the total concentration of NOx can be measured. The comparison of sensing mechanisms for the both sensors was briefly discussed.  相似文献   

20.
Unadded and 0.5 mol% Pd-added ZnO bulk and thin films were prepared by sintering and sputtering, respectively, and their CO gas sensing properties were investigated. The effects of Pd addition, sensing temperature (100–500 °C), and humidity on the CO gas response were discussed. In the bulk sensors, Pd-addition lowered the temperature for the maximum CO gas response (sensitivity) from 400 to 300 °C, whereas the thin film sensors (unadded and Pd-added) exhibited maximum gas response at 200 °C. The Pd-addition enhanced the CO gas response in thin film sensors, and it was also effective for reducing the interference from humidity in both bulk and thin film sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号