首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在MTS815岩石力学试验系统对大理岩进行不同围压三轴压缩试验的基础上,分析研究在不同围压下大理岩的变形特性和强度特性.研究表明,大理岩在三向应力条件下具有明显塑性变形特征,随围压的升高,变形特性表现为塑性特征增强,弹性模量和泊松比增大,峰前扩容明显增大;强度特性表现为峰值强度和残余强度均随围压的增大而线性增大,残余强度对围压的敏感性高于峰值强度,残余内聚力大大低于峰值,残余内摩擦角与峰值非常接近.  相似文献   

2.
利用MTS815型压力试验机进行加轴压卸围压路径下花岗岩常规三轴卸载试验,研究加轴压卸围压路径下岩石的应力-应变全过程曲线、力学性质及能量特征。采用剪胀角描述岩石的扩容特性。研究结果表明:在卸围压过程中,侧向应变与围压先呈线性关系后呈非线性关系,且其增长速率明显大于轴向应变增长速率,表现出明显的侧向扩容;变形模量随围压卸载而逐渐减小,且随着初始围压的增大而逐渐增大;泊松比随围压卸载而不断增大,同一时刻点的轴向应变增量变化量度略大于侧向应变增量变化量;剪胀角随着初始围压增大而减小;基于能量原理获得岩石应变能随着围压的卸载呈逐渐增大的规律。  相似文献   

3.
张威 《科学技术与工程》2012,12(30):8085-8088
利用FLAC3D数值模拟软件,构建了岩石单轴抗压强度试验数值模型。分析研究了矿物弹性模量E、泊松比ν、黏聚力c、摩擦角φ、剪胀角ψ以及加载速率V等对于岩石单轴抗压强度的影响规律。结果表明:岩石单轴抗压强度与弹性模量之间表现出较为明显的线性关系,即岩体中含有硬度较大矿物成分时,岩体强度呈增加趋势。泊松比增加岩石强度亦出现一定程度的增大,之间呈现指数函数关系。岩石所含矿物黏聚力、摩擦角升高,岩石单轴抗压强度升高。单轴抗压强度与黏聚力、摩擦角之间成多项式关系。岩石单轴抗压强度随剪胀角增加而增加,并成多项式关系。相较于摩擦角而言,摩擦角对于岩石单轴抗压强度的影响更大。UCS与加载速率之间近似呈直线关系。  相似文献   

4.
为研究不同卸荷速率下岩石力学特性,以锦屏一级大奔流沟料场特高边坡变质石英细砂岩为例,开展不同卸荷速率和不同围压下的卸荷试验,得到了应力-应变曲线,重点分析了卸荷速率对应力-应变关系、破坏特征、破坏应力差、强度参数的影响规律.结果表明:卸荷作用对岩石脆性破坏特征明显;常规加载试验为压剪破坏,卸荷试验为张剪破坏;随着围压的降低,弹性模量不断降低,卸荷速率越快,非线性关系越明显;卸荷速率越快,泊松比增加越慢;卸荷条件下岩石的黏聚力减小,内摩擦角增大.  相似文献   

5.
三向应力下岩石的强度和变形特性研究   总被引:1,自引:1,他引:0  
为探讨岩石在三向应力作用下的强度和变形破坏规律及影响因素,采用MTS815电液伺服岩石力学试验系统,分别对砂岩和灰岩进行了三轴压缩试验。基于岩石的应力应变曲线与莫尔-库伦准则,对其残余强度、抗剪强度参数和弹性模量等力学变形特性进行了研究,并分析了孔隙率对岩石各类参数的影响。结果表明:围压对岩石的破坏特征有显著影响,岩石由低围压控制下的脆性破坏逐渐转变为高围压控制下的塑性破坏;横向应变的变化规律与侧向压力作用关系不明显,岩石在峰值应力处的横向应变几乎为定值,应力刚降至残余强度时的横向应变也近似为定值;与砂岩相比,灰岩的孔隙率较低,因而内摩擦角较大,峰值强度也越高,峰值后的残余强度降低得越明显;围压对低孔隙率岩石的弹性模量影响较小,而高孔隙率岩石的弹性模量随围压增加而增大。  相似文献   

6.
为寻找更加有效的岩芯脆性室内评价方法,运用有限元软件模拟了岩芯关键力学参数对其脆性破坏特征的影响,计算并分析了脆性指数B1~B6.结果表明:随着弹性模量的增加和泊松比的减小,岩体脆性增强;随着抗压强度和压拉比的增大,岩体试样在破坏特征上脆性增强,但通过对围压和残余强度系数对岩体脆性指数的计算分析,揭示了抗压强度和压拉比对于岩体脆性影响的实质;围压是影响岩体脆性的外在因素,随着围压的增加,岩体脆性减小;另外,通过对脆性指数的方法比较,验证了B6.判断岩体脆-塑性的可行性.  相似文献   

7.
为探究弹性和塑性对胶凝砂砾石料(CSG)应力应变特性的影响,建立了适用于CSG的剪胀方程,参考粗粒土或堆石料剪胀特性的研究方式开展了一系列不同掺量和围压下的三轴压缩试验、三轴等向加卸载试验和三轴轴向加卸载试验,对CSG的剪胀特性进行了系统研究。试验结果表明:CSG加载过程中弹性和塑性应变都不可忽略,CSG在低围压下具有剪胀性,随着围压的增大逐渐向剪缩性过渡;由试验数据得到CSG的弹性体积应变和弹性剪应变,对比分析了考虑和不考虑弹性应变的CSG剪胀特性曲线,发现弹性应变对CSG剪胀特性影响较大,仅在高掺量、高围压、大应力条件下可以忽略弹性应变的影响;二次函数可以很好地描述CSG的剪胀特性。  相似文献   

8.
基于现有各向同性损伤本构理论,提出岩石初始损伤定义及其计算方法。初始损伤表示为加载前的损伤岩石弹性模量相对无损岩石弹性模量的劣化程度。对不同初始损伤的玄武岩试样进行单轴抗压试验,定量分析初始损伤对玄武岩的应力与应变关系、强度、破坏应变、初始泊松比和应变软化性质等的影响,给出单轴抗压强度、初始泊松比等力学参数随初始损伤变量变化的规律及拟合公式。研究结果表明:只有当岩石初始损伤超过损伤门槛值即无损岩石破坏时对应的损伤值时,岩石抗压强度随初始损伤增大而显著减小;与峰值应力对应的应变随初始损伤增大而近似呈线性增大趋势;岩石初始泊松比随初始损伤增大近似呈指数增大;初始损伤越小,应力峰值后的岩石破坏越显脆性。  相似文献   

9.
为研究岩石的损伤特性,基于连续损伤力学理论和岩石微元强度服从Weibull分布函数,利用FLAC3D有限差分数值模拟软件,在围压分别为3,6,10 MPa的情况下,对岩石进行了不同变形参数(E和μ)和强度参数(c和φ)的常规三轴压缩数值试验研究。数值试验结果表明,(1)在加载初期,岩石出现负损伤(压密强化效应),随着轴向应力的增大,割线模量减小,泊松比增大;(2)黏聚力或内摩擦角或围压越大,岩石抗压强度越高,岩石变形过程中的塑性变形阶段越长;(3)损伤起点对应的轴向应变不随强度参数(c和φ)的变化而变化,但随计算初始弹性模量的增大而减小,随围压的增大而增大;(4)泊松比对岩石力学特性和损伤特性影响甚少,可忽略不计。  相似文献   

10.
为了研究岩体的变形特征和能量特征与其所处应力状态之间的关系,开展了5种围压下花岗岩的三轴循环加卸载试验.基于应力-应变曲线,计算了循环加卸载过程中花岗岩的弹性模量和能量密度,分析了应力状态对弹性模量及能量演化规律的影响.研究结果表明:轴向弹性模量随围压的增大而增大,随轴向应力的增大先增大后减小.轴向弹性模量与最大、最小主应力呈现良好的二次函数关系.随着围压的增大,能量密度与弹性能占比(弹性能与输入总能量之比)均显著增大,岩石储能能力提高;随着轴向应力增大,弹性能占比先增大后减小.弹性能占比减小阶段即岩石损伤加剧阶段,围压的增加延长了岩石的损伤演化过程.最后讨论了应力状态、岩石力学参数及能量状态的关联性.  相似文献   

11.
高围压高水压作用下脆性岩石强度变形特性试验研究   总被引:10,自引:1,他引:9  
对锦屏二级水电站引水隧洞大理岩、砂岩进行高围压高水压条件下全应力-应变过程三轴压缩试验,分析高围压高水压对脆性岩石变形、强度及脆-延转化特性的影响,探讨围压变化范围较大时岩石强度与围压及高孔隙水压之间的关系.结果表明:在较大围压范围内,有无施加水压力2种条件下,σ1与σ3之间均呈非线性关系;高孔隙水压力加速了岩石的脆性破裂,降低了岩石的强度.  相似文献   

12.
对塔河碳酸盐岩岩心进行了一系列围压、孔隙压力条件下的三轴压缩测试,分析结果发现:1低围压时,碳酸盐岩石表现出很强的脆性,抗压强度低;高围压时,碳酸盐岩石表现出强塑性,且可能出现塑性硬化。2碳酸盐岩的弹性模量随围压的增大而增大,抗压强度随孔隙压力的增大而降低。3孔隙压力增大,碳酸盐岩的内聚力增大,内摩擦角降低。  相似文献   

13.
红层在四川盆地广泛分布,众多工程建筑座落于其地表附近的弱风化带上,通过四川盆地红层弱风化泥质砂岩的系列岩石力学试验,得出其基本力学特性,同时,就水和围压对岩石力学特性的影响进行了讨论.结果表明:岩石的变形在峰值前表现为弹塑性,水对岩石的强度、弹性常数均有明显降低作用,软化系数为0.52,随围压增高强度线性增高,变形模量、弹性模量、割线模量及泊松比呈自然对数增高.其力学参数和相关关系可为有关工程提供参考和借鉴.  相似文献   

14.
以未风化花岗岩为实验对象,在高温高压三轴力学实验系统上开展三轴压缩实验,分析了三种加载速率下岩样温度、围压对峰值强度、弹性模量的影响,探讨了岩样热损伤演化规律的加载速率效应,建立了花岗岩冷损伤方程。结果显示:在100℃时,加载速率增大,低围压区岩石由延性转向脆性,渐进破坏向突发失稳转变;在500℃时,加载速率增大,低围压区弹性模量硬化明显,失稳模式为准突发失稳;随着加载速率的增大,在低温30~200℃时峰值强度的增加显著,在较高温度200~500℃时峰值强度的增加幅度降低,随着围压的升高,加载速率使峰值强度增强作用降低;各级岩石温度条件下,加载速率与弹性模量相关性不显著;低围压时弹性模量增幅较大,高围压时弹性模量增幅较小;随着加载速率的提高,弹性模量损伤与岩石温度的关系由线性转变为非线性的临界围压降低。  相似文献   

15.
不同围压下大理岩剪胀试验研究   总被引:1,自引:0,他引:1  
采用美国MTS815型电流伺服岩石力学试验系统,对大理岩岩石的18块试件进行试验,测定了其在6种不同围压下全应力应变过程中剪胀力及体积应变变化情况,在试验资料分析的基础上,获得了岩石强度、剪胀力及体积应变随围压的变化规律,这些规律对于充分利用破裂岩石本身的自稳性能,对于深入研究围岩破裂带的剪胀变形机制及支护的作用机理,从而揭示高应力大松动圈巷道围岩大变形的力学机理,以及支护与围岩的相互作用关系都具有重要意义。  相似文献   

16.
基于三轴压缩试验的红砂岩本构模型   总被引:5,自引:0,他引:5  
利用RMT150B型岩石力学多功能试验机对红砂岩试样在不同围压条件下的三轴压缩应力应变全过程曲线进行了系统试验研究。研究表明:围压增大,岩石的峰值强度也随着增高;红砂岩的体积应变在峰值后区表现出很大的剪胀性。基于试验结果,分析了岩石屈服强度、峰值强度、残余强度与围压之间的关系,根据试验得到了典型三轴压缩应力应变全过程曲线,建立了一个由线弹性段Ⅰ、线弹性段Ⅱ、线性软化段、线性残余塑性流动段组成的线性本构模型,给出了红砂岩4个阶段的本构方程,并确定了相关参数。  相似文献   

17.
沈君  刘保国  程寅  宋宇  刘浩  武磊 《科学技术与工程》2020,20(13):5297-5304
为了分析坚硬脆性岩石在单轴及常规三轴压缩条件下的强度和变形特性,通过在TAW-2000微机控制电液伺服试验机上对辉绿岩进行单轴及常规三轴压缩试验,主要分析辉绿岩在围压为1、3、5、10 MPa时基本物理力学参数的离散程度,其弹性模量的离散程度指标值较小,在0.27%~3.49%波动,能较好地表征辉绿岩的变形特性。试验结果表明:随着围压的增大,岩石峰值应变和残余应变均表现出显著的线性增长关系,可采用一次函数形式拟合,弹性模量、变形模量和泊松比均表现出较明显的非线性增长关系,可采用幂函数形式进行拟合,但并不会随着围压的增大而无限增大,而是趋于一个稳定值,这一规律为实际工程中不同地应力条件下准确选取弹性模量、泊松比等参数提供理论基础;随着围压的增大,岩石的峰值强度和残余强度均呈现出较显著的线性增长关系,可采用一次函数形式拟合,并计算出黏聚力和内摩擦角,为岩石工程设计时强度参数的选择提供参考依据。  相似文献   

18.
含孔洞大理岩破坏特性的颗粒流分析   总被引:1,自引:0,他引:1  
基于室内单轴压缩试验结果,利用颗粒流程序PFC2D,模拟含预制孔洞大理岩在单轴和双轴压缩条件下的破坏过程,分析预制孔洞形状、围压大小以及岩石非均质性对大理岩力学特性和裂纹扩展的影响.数值结果表明:与完整大理岩试样相比,含孔洞试样的峰值强度显著降低,降低程度与孔洞形状有关;围压对含孔洞大理岩试样的力学特性和裂纹扩展有显著影响,含孔洞试样的峰值强度随围压的增加而增加,但偏应力峰值随围压的增加呈先增大后减小的变化趋势;试样的破坏模式与孔洞形状相关,含圆形孔洞试样为类X型剪切破坏,含矩形孔洞或马蹄形孔洞试样为对角剪切破坏;岩石内部的矿物结核影响了裂纹的扩展路径,从而改变试样的宏观破坏模式.微观机理分析表明:孔洞周边裂纹的萌生与扩展过程伴随着应力集中区的释放与转移;含孔洞试样的宏观裂纹有3种模式:孔壁剥落、拉伸裂纹和压剪裂纹.  相似文献   

19.
为了研究围压作用情况下的层状岩体压缩特性,采用数值方法建立分析模型,计算不同围压下岩体的应力和应变后发现,随着结构面倾角的增大,层状岩体的抗压强度呈现先减小后增大的趋势;结构面倾角为60°时试件的三轴抗压强度最小;层面倾角为90°时对应的三轴抗压强度最大;对于相同倾角的试件,三轴压缩强度与围压呈显著的线性关系。数值试验反应的岩石应力-应变曲线与试验得到的结果相符,随着围压的增大,试样的刚度不断增大,弹性模量与围压之间呈线性关系。  相似文献   

20.
刘新义 《科学技术与工程》2012,12(33):8937-8942
利用FLAC3D数值模拟软件,构建了岩石三轴抗压强度试验数值模型。基于应变软化模型,分析研究了矿物弹性模量E、泊松比ν、粘聚力c、摩擦角φ、剪胀角ψ以及加载速率V等对于岩石峰值抗压强度的影响规律。结果表明:(1)初始加压阶段,岩石试件基本无声发射现象的产生;达到峰值强度前,迅速出现声发射现象,声发射次数突然增加,并逐渐至最高值;峰值强度后,基本无声发射产生;(2)三轴压缩试验试件破坏模式主要有单一贯穿性剪切破坏面、四周崩坍性张拉破坏面、X型剪切破坏面。对于不同围压情况,破坏面形态略有变化,但破坏以上述三种为主;(3)随着矿物颗粒弹性模量、加载速率的增加,峰值抗压强度逐渐增加,之间表现出较为明显的多项式函数关系;同时,峰值抗压强度随矿物粘聚力、摩擦角、剪胀角、侧限围压量值的升高而升高,各自之间成较为明显的线性函数关系;(4)岩石矿物泊松比大小变化与试件峰值强度间无较为明显的线性或非线性关系,即泊松比变化对于岩石峰值强度的影响较为复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号