首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.  相似文献   

2.
Diporeia hoyi and Mysis relicta are the most important prey items of slimy sculpins (Cottus cognatus) in the Great Lakes. Slimy sculpins were collected from dreissenid-infested bottoms off seven Lake Michigan ports at depths of 27–73 m in fall 2003 to study their lake-wide diets. Relatively large dreissenid biomass occurred at depths of 37- and 46-m. Quagga mussels (Dreissena bugnesis) composed at least 50% of dreissenid biomass at Manistique, Saugatuck, and Sturgeon Bay. Mysis accounted for 82% of the sculpin diet by dry weight at eastern Lake Michigan while Diporeia composed 54–69% of the diet at western Lake Michigan and dominated the diets of slimy sculpins at all sites deeper than 46 m. In northern Lake Michigan, this diet study in new sites showed that slimy sculpin consumed more prey with low energy contents, especially chironomids, than Mysis and Diporeia in shallow sites (depth <55 m). We recommend diet studies on sedentary benthic fishes to be conducted along perimeters of the Great Lakes to observe changes in their diets that may be impacted by changing benthic macroinvertebrate communities.  相似文献   

3.
In November 1981, we observed intense predation on lake whitefish (Coregonus clupeaformis) eggs by longnose suckers (Catostomus catostomus) on lake whitefish spawning grounds in northwestern Lake Huron. Since longnose suckers commonly frequent the same habitat used by spawning lake whitefish, there exists the potential for high losses of eggs due to sucker predation.  相似文献   

4.
Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001–2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.  相似文献   

5.
Though aquatic ecosystems (and the Laurentian Great Lakes in particular) have faced many stressors over the past century, including fisheries collapses and species invasions, rarely are data available to evaluate the long-term impacts of these stressors on food web structure. Stable isotopes of fish scales from the 1940s to the 2010s in South Bay, Lake Huron were used to quantify trophic position and resource utilization for fishes from offshore (alewife, cisco, lake trout, lake whitefish, rainbow smelt) and nearshore (rock bass, smallmouth bass, white sucker, yellow perch) habitats, providing one of the longest continuous characterizations of food webs in the Laurentian Great Lakes. Mean δ15N and δ13C values for each species were compared across twenty-year time periods. Using directional statistics, no significant community-wide changes were detected between time periods from 1947 to 1999. In contrast, a significant change was detected between 1980-1999 and 2000–2017, with all species showing increased reliance on nearshore resources. The increase in nearshore resource reliance for lake whitefish between these time periods was the greatest in magnitude compared with any other species between any two adjacent time periods. Besides lake whitefish, the increased reliance on nearshore resources was more pronounced for nearshore compared to offshore species. The timing of these shifts coincided with the invasion of dreissenid mussels and round goby, and declines in offshore productivity and prey densities. These results show the unprecedented magnitude of recent food-web change in Lake Huron after 50 years of relative stability.  相似文献   

6.
The shallow-sloping coastal bathymetry of Saginaw Bay (Lake Huron) supports broad fringing wetlands. Because benthic invertebrates form an important forage base for fish, wading birds, and waterfowl that utilize these habitats, understanding the drivers of invertebrate community structure has significant management implications. We used Great Lakes basin-wide data from 2002 to place Saginaw Bay wetland invertebrate communities and their environmental drivers into a basin-wide context. Various aspects of community structure were highly correlated with fetch and watershed agriculture across the basin. Saginaw Bay wetlands had relatively high fetch and watershed agriculture and supported unique invertebrate communities, typified by high abundances of many insect taxa. Wetlands from other regions around the basin tended to have more crustaceans and gastropods than the Saginaw Bay wetlands. A 1997–2012 time series from three representative Saginaw Bay wetlands revealed substantial shifts in community structure throughout the period, especially from 2001 through 2004. These years followed a 1-m decline in Lake Huron water levels that occurred between 1997 and 2000. Major community changes included decreasing insect abundance, especially chironomids, and increasing crustacean abundances, especially Hyalella azteca (Amphipoda). While factors in addition to water levels were likely also important, our time series analysis reveals the marked temporal dynamics of Saginaw Bay wetland invertebrate communities and suggests that water level decline may have influenced these communities substantially. Both the spatial and temporal community patterns that we found should be considered in future bio-assessments utilizing wetland invertebrates.  相似文献   

7.
Invasive dreissenid mussels (D. polymorpha and D. r. bugensis) have fundamentally altered Laurentian Great Lake ecosystems, however in many areas their abundances have declined since the mid-1990s. Another invader, the benthic fish round goby (Neogobius melanostomus), is morphologically adapted to feed on dreissenids and likely affects dreissenid populations; however, the degree of this predatory effect is variable. In 2009 and 2010, we examined round goby abundances, size distributions, diet contents, and diet selectivity in Saginaw Bay, Lake Huron; a shallow bay that has been subjected to numerous anthropogenic stressors. We further used a consumption model to estimate dreissenid consumption by three different size classes of round goby. Round gobies were found throughout the bay and most were smaller than 80 mm total length. Round gobies of all sizes consumed dreissenids (including fish as small as 30 mm total length), though dreissenids were rarely preferred. The relative proportion of dreissenids (by biomass) present in diets of round gobies increased with fish size, but also throughout the year for all size classes. Despite this, overall consumptive effects of round gobies on dreissenids in Saginaw Bay were low. Many dreissenids present in the bay were larger than those consumed by round gobies. Bioenergetics-based model estimates suggest that the smallest round gobies are responsible for the majority of dreissenid consumption. While our findings are limited to soft substrates and influenced by sampling restrictions, our study design allowed us to put bounds on our estimates based upon these multiple sources of uncertainty.  相似文献   

8.
The collapse of Diporeia spp. and invasions of dreissenid mussels (zebra, Dreissena polymorpha; quagga, D. bugensis) and round goby (Neogobius melanostomus) have been associated with declines in abundance of native benthic fishes in the Great Lakes, including historically abundant slimy sculpin (Cottus cognatus). We hypothesized that as round goby colonized deeper habitat, slimy sculpin avoided habitat competition, predation, and aggression from round goby by shifting to deeper habitat. Accordingly, we predicted increased depth overlap of slimy sculpin with both round goby and deepwater sculpin (Myoxocephalus thompsonii) that resulted in habitat squeeze by both species. We used long-term bottom trawl data from Lakes Michigan, Huron, and Ontario to evaluate shifts in slimy sculpin depth and their depth overlap with round goby and deepwater sculpin. Lake Huron most supported our hypotheses as slimy sculpin shifted to deeper habitat coincident with the round goby invasion, and depth overlap between slimy sculpin and both species recently increased. Slimy sculpin depth trends in Lakes Michigan and Ontario suggest other ecological and environmental factors better predicted sculpin depth in these lakes.  相似文献   

9.
Lake whitefish (Coregonus clupeaformis) is an ecologically and commercially significant species across the Laurentian Great Lakes. Over the past 20 years, lake whitefish population abundance has substantially declined across lakes Huron and Michigan, being driven by reduced recruitment of juvenile fish into the population. However, the life stage at which the recruitment bottleneck is occurring and what factors are contributing to the declines remain unknown. One hypothesis is that dreissenid mussels reduced zooplankton availability to larval lake whitefish, leading to poor growth and survival of this critical life stage. Here, we present results of a larval fish survey conducted at the Fishing Islands spawning region in Lake Huron and examine whether declines in juvenile recruitment are linked to reduced larval fish density. Larval fish were collected annually during two time periods: (1) a historical time period before dreissenid mussel establishment (1976–1986); and (2) a contemporary time period after dreissenid mussels became established (2017–2019, 2021). We found significant declines in larval densities and growth between historical and contemporary time periods. Following dreissenid establishment, larval densities and growth were on average only 23% and 55% of historical values, respectively. Moreover, year class strength at the juvenile stage (age 4) was positively related to larval density. Several explanatory variables contributed to annual variation in larval densities, with dreissenid mussels and water levels having the most consistent effect. Our results suggest that juvenile recruitment is being limited at the larval stage, owing to overall lower larval production and potentially exacerbated by slower growth.  相似文献   

10.
Invasive quagga mussels have recently replaced zebra mussels as the dominant filter-feeding bivalves in the Great Lakes. This study examined microzooplankton (i.e., grazers < 200 μm) and their trophic interactions with phytoplankton, bacteria, and bivalve mussels in Saginaw Bay, Lake Huron, following the zebra to quagga mussel shift. Microzooplankton distribution displayed strong spatial and temporal variability (1.73–28.5 μg C/L) relative to phytoplankton distribution. Ciliates were the dominant component, especially in the spring and early summer. Rotifers and dinoflagellates increased toward late summer/fall in the inner and outer parts of the bay, respectively. Microzooplankton grazing matched bacterial growth rates and removed ca. 30% of the phytoplankton standing stock in the < 100 μm size fraction per day. The greatest herbivory occurred at the site dominated by colonial cyanobacteria. Microzooplankton, which comprised < 4% of the quagga mussels prey field (i.e. available prey), contributed 77% and 34% to the quagga carbon-based diet during Microcystis and diatom blooms, respectively. Feeding on microzooplankton could buffer mussels during lean periods, or supplement other consumed resources, particularly during noxious cyanobacterial blooms. The results of this study demonstrate that microzooplankton are a resilient and critical component of the Saginaw Bay ecosystem.  相似文献   

11.
Although the typical interaction between non-native invasive species and native species is considered to be negative, in some cases, non-native species may facilitate native species. Zebra and quagga mussels (Dreissena spp.) are aggressive invaders in freshwater systems, and they can alter energy flow by diverting nutrients from pelagic to benthic food-webs. In the last two decades, quagga mussels have largely replaced zebra mussels in shallow regions of the Laurentian Great Lakes and colonized deeper waters previously devoid of all dreissenids. Here, we aim to characterize potential positive effects of dreissenids in relation to depth on the benthic community in lakes Michigan and Huron. For this study, we used benthic survey data collected from Lake Michigan in 2015 and Lake Huron in 2017 and annual U.S. EPA Great Lakes National Program Office Long-term Biology Monitoring Program data for both lakes from 1998 to 2019. Benthic species richness and abundance (excluding dreissenids) in both lakes were almost three-fold higher in the nearshore (<70 m) compared to offshore (>70 m) communities. We found that, even though abundance of benthic invertebrates decreased with increased depth, total benthos density and biomass were higher in the presence than in the absence of quagga mussels in both lakes. Moreover, increased quagga mussel density and biomass with depth offset the lower benthos density and biomass at deeper depths, and samples with dreissenids had high densities of oligochaetes in both nearshore and offshore communities. These patterns are consistent with facilitative effects of quagga mussels on both shallow and deep-water benthic communities.  相似文献   

12.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

13.
In this study we evaluated changes in benthic invertebrate communities of South Bay, Lake Huron following the invasion of zebra mussels (Dreissena polymorpha) and considered the implications for diets and growth of whitefish (Coregonus clupeaformis), a commercially important fish in the Great Lakes. Of the ten benthic invertebrate groups identified prior to invasion (1980–81), only densities of Diporeia and Oligochaeta have changed since the appearance of the zebra mussel, and only Diporeia and Chironomidae changed in relative abundance. These changes are similar to those observed in other areas of the Great Lakes, with the exception of an increase in Oligochaeta density. Post-invasion (2002–03) shallow-water communities appear to be more homogeneous, dominated by zebra mussels and Isopoda, whereas deep-water sites are more heterogeneous due to the loss of Diporeia. Additional data on Diporeia density for several years between 1959 and 2004 indicated that current low densities are not typical of South Bay. Based on changes in the benthic communities and published literature on whitefish diets, we predict that unless whitefish are able to switch to Mysis as an alternative to Diporeia, post-invasion whitefish diets will only contain a maximum of 57 to 84% of their former energy content. These predictions are likely underestimates, as they do not take into account increased energy costs associated with reductions in total invertebrate density at historical foraging depths.  相似文献   

14.
Samples of dreissenid mussels were collected from 21 sites along the U.S. shores of the southern part of the Great Lakes and their connecting channels. These samples were analyzed for tissue levels of 16 chlorinated organic compounds, mostly pesticides, as well as for lipid levels. Aldrin, endrin, and lindane were found above detection levels at less than one-half of the sites, primarily at sites in Lake Michigan. Mirex was detected at nine sites mostly in Lake Ontario and the Niagara River, but also near Detroit and in Saginaw Bay. Heptachlor was detected at only two sites, both in Lake Erie. Cis-chlordane, dieldrin, hexachlorobenzene, heptachlor, trans-nonachlor, and total DDTs were detected at all or almost all of the sites. Except for hexachlorobenzene, which was highest near Buffalo, these chemicals were found at higher concentrations in Lake Michigan, especially near Milwaukee, than in the other areas studied. A comparison of the concentrations of chlorinated organic compounds to the levels of lipids showed that differences in dreissenid lipid levels among sites were not the major cause of the observed differences in concentrations in the chlorinated organic compounds.At most sampling locations, the category total DDTs was composed primarily of the DDT breakdown products DDD and especially DDE. However, a substantial percentage of the total DDTs detected at sites in eastern Lake Erie and western Lake Ontario was composed of the parent DDT compounds, suggesting the presence of a relatively recent input of this compound in this area.Comparison of the concentrations of chlorinated organic compounds measured in Great Lakes dreis-senids with concentrations of these compounds in marine mussels and oysters found generally similar levels for most of the compounds. Exceptions to this were hexachlorobenzene and mirex which had mean concentrations more than 5 times greater in mussels from the Great Lakes than from marine locations and lindane which had concentrations in mussels from the Great Lakes less than one-tenth of those from marine mussels.  相似文献   

15.
The ongoing threat of introduction of invasive species, including crayfish, to the Laurentian Great Lakes has motivated the development of predictive models to inform where these invaders are likely to establish. Our study is among the first to apply regional freshwater-specific GIS layers to species occurrence data to predict ecosystem suitability to invasions, specifically for the red swamp crayfish, Procambarus clarkii, in the Great Lakes. We combined a database of crayfish species occurrences with the Great Lakes Aquatic Habitat Framework (GLAHF) GIS layers to model habitats suitable to invasion by P. clarkii using boosted regression trees and physiological information for this species. We developed a model of all suitable crayfish habitat across the Great Lakes, then constrained this habitat to areas anticipated to be suitable for P. clarkii based on known physiological limitations of this species. Specifically, P. clarkii requires a minimum temperature of 15?°C for copulation and oviposition, with peak reproduction occurring at temperatures of 20–23?°C. We identified 2% of the Great Lakes as suitable for P. clarkii establishment and 0.88% as optimal for this crayfish, primarily located on the southern coastlines of lakes Michigan and Erie and shallow bays including Saginaw Bay (Lake Huron), Green Bay (Lake Michigan), and Henderson Bay (Lake Ontario). These predictions of where P. clarkii is likely to establish populations can be used to identify areas where education, outreach, compliance, and law enforcement efforts should seek to prevent new introductions of this crayfish and help prioritize locations for surveillance to detect newly established populations.  相似文献   

16.
Contemporary conditions in Lake Michigan where cisco (Coregonus artedi) populations are expanding are vastly different from those encountered by the historic fish community. Invasive species introductions have substantially altered the Lake Michigan ecosystem in the last half century. Successful management efforts for cisco in Lake Michigan hinge on our ability to understand their contemporary ecology, especially diet. We collected 725 cisco stomachs opportunistically from commercial fisheries (2%) and in agency surveys (98%) over six years (2014–2019). The majority (70%) of stomachs were from East Grand Traverse Bay and 96% of these were collected at Elk Rapids. Additional samples were collected from Charlevoix (8%), Little Traverse Bay (11%), other sites in northern Lake Michigan (4%), Central Lake Michigan (6%), and Green Bay (1%). Our results indicated a high degree of piscivory, in contrast to historical and contemporary accounts of planktivory for cisco in the other Laurentian Great Lakes. The top three prey items by mass were not native to the Great Lakes and these accounted for 87% of all observed prey mass consumed: round goby (Neogobius melanostomus) (58%), Bythotrephes longimanus (15%), and alewife (Alosa pseudoharengus) (14%). Round goby dominated the prey in the spring and summer, while B. longimanus and alewife occurred more in summer and fall diets. The contemporary population of cisco in Lake Michigan has been able to uniquely capitalize on abundant invasive prey resources, which may be less limiting and more energy-rich than a more typical planktivorous cisco diet.  相似文献   

17.
Excessive nutrient loads and species invasions pose significant threats to productivity and function of Great Lakes aquatic ecosystems. We used an Ecopath and Ecosim model to analyze impacts of changes in phosphorus loads, and dreissenid mussels and alewife biomass on the Saginaw Bay food web, Lake Huron. We configured the food web model in Ecopath with pre-dreissenid (1990) data on organism biomass, production, consumption, and diet from federal and state agency surveys and other sources. We conducted 70-year simulations in Ecosim of single factors (nutrients, alewives, and dreissenids) and their combinations. Phosphorus load scenarios were run with high (1970s), average (current), and low (target) levels; alewife scenarios were run with double the 1990–2003 average biomass, 1990–2003 average biomass, and alewife absence; dreissenid scenarios were run with the 1990–1996 average biomass, current (2009–2010) biomass, and dreissenid absence. Results indicated that phosphorus loads were positively correlated with simulated biomass of most food web groups, and alewife biomass was negatively correlated with biomass of most fish groups and macrozooplankton. Dreissenid impacts were most severe on lower trophic levels but were relatively minor for fish groups compared with nutrient and alewife scenarios. Dreissenids had little effect on fish because Chironomids, which feed on detritus and are the main component of fish diets, were not affected by dreissenids. Our results suggest that, under current conditions of absence of alewives and reduced dreissenid biomass, the target nutrient loads established in 1978 would not sustain current fishery harvests in Saginaw Bay given food web changes caused by invasive species.  相似文献   

18.
We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5–100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900 pmol g− 1·min− 1 and activities in quagga mussels ranged from 19,500 to 223,800 pmol g− 1·min− 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.  相似文献   

19.
River plumes form in coastal areas where tributaries mix with their receiving waters. Plume waters are enriched with terrestrial-derived nutrients from their watersheds creating hotspots of biological productivity. The biological importance of plumes scales with the size and persistence of the plume; therefore, large, persistent plumes are more important than small, transient plumes. To date, most studies of plumes have focused on assimilation of terrestrial-derived energy by aquatic species or lower-level food web effects, primarily in marine systems. Few studies have described fish communities near plume habitats and compared them to non-plume areas, especially for the numerous small plumes in the Laurentian Great Lakes. Here we demonstrate that small plumes in the main basin of Lake Michigan enhance local primary productivity and influence distribution and abundance of nearshore Great Lakes fishes. We found that plume fish communities were relatively depauperate and did not support higher biological diversity of fishes compared to non-plume areas. However, individual species including rainbow smelt Osmerus mordax, spottail shiner Notropis hudsonius, and white sucker Catostomus commersonii were more abundant around plumes. Our results demonstrate that small plumes in the main basin of Lake Michigan support highly localized hotspots of biological productivity and fish abundance, primarily within 2?km of river mouths.  相似文献   

20.
It has been suggested that some Great Lakes coastal wetlands may be resistant to invasion by several non-indigenous species including round goby, Neogobius melanostomus. However, there is inconclusive evidence regarding how susceptible exposed fringing coastal wetlands, in particular, are to round goby invasion. Therefore, we quantified round goby catch per unit effort (CPUE) using fyke nets in the Beaver Archipelago of Lake Michigan, and the Les Cheneaux islands and Saginaw Bay regions of Lake Huron. In addition, we examined the influence of body size and maturity on round goby habitat use. Catch per unit effort from fyke nets was highest in the Beaver Archipelago, where wetlands were dominated by small, immature round gobies and open water habitats were dominated by large adults. Fyke net catches within Les Cheneaux sites were similar between habitats and differences in size and maturity were not observed. Conversely, very few round goby were captured in wetlands of Saginaw Bay where CPUE was moderate in open water. This indicates that some exposed fringing wetlands in the Great Lakes, specifically those with high productivity, could have a higher degree of resistance to round goby invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号