首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
沈雁  戴瑜兴 《计算机工程》2019,45(2):284-289
在OpenCL并行计算框架的clMAGMA库中,Cholesky分解算法采用大尺寸分块并行方法,不能充分利用GPU的高速局部存储器,且在计算过程中存在多次GPU-CPU间的数据传递。为此,提出采用小尺寸分块并行方法,充分利用GPU中的高速局部存储器,使矩阵子块的逆矩阵得到复用,完成对称正定矩阵的高效Cholesky分解,并且其能够应用于三维视觉光束平差问题中的大型正定矩阵的分解。实验结果表明,该方法的Cholesky分解速度比clMAGMA提升50%以上,针对光束平差问题,比Ceres Solver中使用的Eigen库速度提升约38倍。  相似文献   

2.
为克服交叉相关外推算法时间复杂度高、运算时间过长的缺点,提出一种基于GPU的快速并行化算法,应用于地闪落点的外推预测。首先分析串行的算法流程,然后对算法进行并行化分析设计,再针对AMD系列GPU硬件架构特点,运用OpenCL技术从主存与设备内存之间的数据传输、显存访问模式等方面对算法进一步优化。最后将地闪监测实况数据与本算法外推计算结果进行比对,分析不同精度下串行与并行算法的计算效率。实验结果表明,该算法充分利用GPU强大的并行计算能力,计算速度提高了近17倍。  相似文献   

3.
基于OpenCL的数字相控阵雷达干扰模拟   总被引:1,自引:0,他引:1  
针对现代战争复杂电磁环境以及数字相控阵雷达干扰信号生成数据量大、多波束等难点,利用图形处理器(GPU)带宽高,运算能力强的特点,使用OpenCL异构编程框架实现数据级并行策略,设计了基于OpenCL的五种典型数字干扰并行算法。算法根据GPU的读写机制进行优化设计,充分发掘了现有GPU的并行计算能力。实验结果表明:基于GPU的数据并行计算程序与中央处理器(CPU)平台相比较,加速比最大可达3.25,提高了相关雷达回波模拟设备的速度,基本满足数字相控阵雷达信号处理的实时性要求。  相似文献   

4.
大尺度、高分辨率数字地形数据应用需求的增长,给计算密集型的累积汇流等数字地形分析算法带来了新的挑战。针对CPU/GPU(Graphics Processing Unit)异构计算平台的特点,提出了一种基于OpenCL(Open Computing Language)的多流向累积汇流算法的并行化策略,具有更好的平台独立性和可移植性,简化了CPU/GPU异构平台下的并行应用程序设计。累积汇流并行算法包括时空独立型的流量分配和空间依赖型的累积入流两个过程,均定义为OpenCL内核并交由OpenCL设备并行执行,其中累积入流过程借助流量转移矩阵由递归式转换为迭代式来实现并行计算。与基于流量转移矩阵的并行汇流算法相比,尽管基于单元入度矩阵的并行汇流算法可以降低迭代过程中的计算冗余,但需要采用具有较大延迟的原子操作以及需要更多的迭代次数,在有限的GPU计算资源下,两种算法性能差异不明显。实验结果表明,并行累积汇流算法在NVIDIA GeForce GT 650M GPU上获得了较好的加速比,加速性能随格网尺度增加而有所增加,其中流量分配获得了约50~70倍的加速比,累积入流获得了10~20倍的加速比,展示了利用OpenCL在GPU等并行计算设备上进行大规模数字地形分析的潜在优势。  相似文献   

5.
用光谱分析鉴别生物特征,导致数据量大,而实际需要必须实时处理。偏最小二乘法是使用最广泛的鉴别算法,但是对于大规模数据流该算法无法达到实时性。为了解决这个应用矛盾,提出了一种基于NVIDIA CUDA架构下的并行计算策略,利用具有大规模并行计算特征的图形处理器(GPU)作为计算设备,结合GPU存储器的优势实现了偏最小二乘算法。实验的测试结果表明,在GPU上使用CUDA实现的偏最小二乘算法比在CPU上实现该算法快了47倍,性能得到了显著提高,从而使偏最小二乘算法应用于大规模数据流处理成为可能。  相似文献   

6.
为满足文本检索、计算生物学等领域海量数据匹配对高性能计算的要求,提出一种基于计算统一设备架构(CUDA)的位并行近似串匹配算法。结合图形处理器(GPU)的高并行计算结构及存储带宽特性,通过优化数据存储方式,实现并行化动态规划矩阵算法(BPM)的加速,并对加速性能进行对比测试。实验结果表明,BPM算法通过GPU加速能获得20倍左右的加速比。  相似文献   

7.
提升小波变换算法在图像去噪中有广泛的应用,但是对于海量数据流该算法计算速度缓慢无法达到实时性.为了提高计算速度,提出一种基于图形处理器(GPU)的并行计算策略,把传统提升小波变换算法映射到CUDA编程模型,利用具有大规模并行计算特征的GPU作为计算设备,结合GPU存储器的优势实现了基于滑动窗口的提升小波变换并行算法.实验的测试结果表明,在现有的实验条件下,随着图像的增加,提升小波变换并行算法可以把计算速度提高50倍,效率提高明显.本文提出的方法也可以用其他图像处理算法的并行化.  相似文献   

8.
在热传导算法中,使用传统的CPU串行算法或MPI并行算法处理大批量粒子时,存在执行效率低、处理时间长的问题。而图形处理单元(GPU)具有大数据量并行运算的优势,为此,在统一计算设备架构(CUDA)并行编程环境下,采用CPU和GPU协同合作的模式,提出并实现一个基于CUDA的热传导GPU并行算法。根据GPU硬件配置设定Block和Grid的大小,将粒子划分为若干个block,粒子输入到GPU显卡中并行计算,每一个线程执行一个粒子计算,并将结果传回CPU主存,由CPU计算出每个粒子的平均热流。实验结果表明,与CPU串行算法在时间效率方面进行对比,该算法在粒子数到达16 000时,加速比提高近900倍,并且加速比随着粒子数的增加而加速提高。  相似文献   

9.
点云分割是逆向工程中模型重建的关键技术之一,然而在求取点云特征时非常耗时,通过OpenCL异构计算对其进行性能加速有着重要的现实意义。以散乱无序的点云为研究对象,通过OpenCL对点云分割算法加以改进。算法主要分为并行计算点云数据的特征值,并行计算点云数据的法向量和曲率3个步骤。在计算中,根据GPU的并行结构和硬件特点,优化了数据存储结构,提高了数据访问效率,降低了算法复杂度。实验结果表明,算法充分利用了OpenCL的并行处理能力,运行效率是基于CPU实现的16倍。  相似文献   

10.
针对拉格朗日多项式逻辑回归算法中逻辑回归参数计算复杂高、耗时长,直接制约其在大数据量遥感图像上应用的问题,提出了基于图形处理器GPU对算法进行数据级并行计算处理。算法首先利用已知的训练样本进行多元回归参数估算,然后利用得到的回归参数和光谱数据进行分类,能够获得较高的分类精度,其中算法步骤中的矩阵乘法、矩阵求逆、矩阵特征值计算采用CULA库函数并行实现。利用真实场景的高光谱图像对文中提出的并行计算优化方案实验验证,结果表明,该方法能够实现对多元回归参数计算加速200倍左右,对整个拉格朗日多项式逻辑回归分类算法计算加速60倍左右。  相似文献   

11.
王丽娜  史晓华 《计算机应用》2014,34(11):3121-3125
针对人脸轮廓提取中Chan-Vese模型计算量大、分割速度缓慢等问题,采用开放计算语言(OpenCL)并行编程模型,提出了一种基于图形处理器(GPU)和多核CPU加速的并行算法。该算法首先将模型的框架进行重构,消除模型中的数据依赖关系;然后,利用开放计算语言对算法进行并行化以及相应的优化。实验结果表明,与单线程算法相比,在NVIDIA GTX660和AMD FX-8530下达到了较高的加速比。  相似文献   

12.
许川佩  王光 《计算机应用》2016,36(7):1801-1806
针对尺度不变特征变换(SIFT)算法实时性差的问题,提出了利用开放式计算语言(OpenCL)并行优化的SIFT算法。首先,通过对原算法各步骤进行组合拆分、重构特征点在内存中的数据索引等方式对原算法进行并行化重构,使得算法的中间计算结果能够完全在显存中完成交互;然后,采用复用全局内存对象、共享局部内存、优化内存读取等策略对原算法各步骤进行并行设计,提高数据读取效率,降低传输延时;最后,利用OpenCL语言在图形处理单元(GPU)上实现了SIFT算法的细粒度并行加速,并在中央处理器(CPU)上完成了移植。与原SIFT算法配准效果相近时,并行化的算法在GPU和CPU平台上特征提取速度分别提升了10.51~19.33和2.34~4.74倍。实验结果表明,利用OpenCL并行加速的SIFT算法能够有效提高图像配准的实时性,并能克服统一计算设备架构(CUDA)因移植困难而不能充分利用异构系统中多种计算核心的缺点。  相似文献   

13.
一种在GPU上高精度大型矩阵快速运算的实现   总被引:3,自引:0,他引:3  
苏畅  付忠良  谭雨辰 《计算机应用》2009,29(4):1177-1179
设计了一种在图形处理器(GPU)上完成大型矩阵快速运算的方法,主要通过使用Kahan求和公式来确保计算精度,根据GPU特点设计矩阵分块方式和内存分配机制来减少对数据访问频次,以发挥GPU的并行体系结构特性来提高计算速度。实验结果表明此方法能够取得较好的效果,可大大提升大型矩阵乘法的运算速度和精度。  相似文献   

14.
目前目标识别领域,在人体检测中精确度最高的算法就是可变形部件模型(DPM)算法,针对DPM算法计算量大的缺点,提出了一种基于图形处理器(GPU)的并行化解决方法.采用GPU编程模型OpenCL,对DPM算法的整个算法的实现细节采用了并行化的思想进行重新设计实现,优化算法实现的内存模型和线程分配.通过对OpenCV库和采用GPU重新实现的程序进行对比,在保证了检测效果的前提下,使得算法的执行效率有了近8倍的提高.  相似文献   

15.
kNN算法是机器学习和数据挖掘程序中经常使用的经典算法。随着数据量的增大,kNN算法的执行时间急剧上升。为了有效利用现代计算机的GPU等计算单元减少kNN算法的计算时间,提出了一种基于OpenCL的并行kNN算法,该算法对距离计算和排序两个瓶颈点进行并行化,在距离计算阶段使用细粒度并行化策略和优化的线程模型,排序阶段使用优化内存模型的双调排序。以UCI数据集letter为测试集,分别使用E8400和GTS450运行kNN算法进行测试,采用GPU加速的并行kNN算法的计算速度比CPU版提高了40.79倍。  相似文献   

16.
图形处理器(graphic processing unit,GPU)的最新发展已经能够以低廉的成本提供高性能的通用计算。基于GPU的CUDA(compute unified device architecture)和OpenCL(open computing language)编程模型为程序员提供了充足的类似于C语言的应用程序接口(application programming interface,API),便于程序员发挥GPU的并行计算能力。采用图形硬件进行加速计算,通过一种新的GPU处理模型——并行时间空间模型,对现有GPU上的N-body实现进行了分析,从而提出了一种新的GPU上快速仿真N-body问题的算法,并在AMD的HD Radeon 5850上进行了实现。实验结果表明,相对于CPU上的实现,获得了400倍左右的加速;相对于已有GPU上的实现,也获得了2至5倍的加速。  相似文献   

17.
GPU加速希尔加解密方法的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
GPU有效地利用了数量巨大的晶体管制造大量的处理单元,适用于处理单任务多数据(SIMD)的计算任务。研究了GPU的体系结构及CUDA的编程模式,改进了基于CPU的希尔加解密方法,使用多个线程将计算中耗时的矩阵相乘部分改造成SIMD模式,并分析了线程块内线程数对加速比的影响。实验结果表明,基于GPU的并行矩阵相乘的希尔加解密方法成功实现了硬件加速,相对于CPU上运行的希尔加解密方法,其执行效率明显提高,可获取12倍以上的加速,并易于扩展,对大规模数据加密和解密处理呈现出高效的处理能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号