首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以韶关冶炼厂真空炉渣氧压浸出液为原料,以P204及Rex t-32为萃取剂萃取分离与富集锗组分,考察萃取有机相组成、酸度pH、萃取时间、相比等因素,对锗分离与富集效果的影响.研究结果表明:pH=2.0,相比V (O)/V (W)=1∶1,萃取10 min ,一次萃取锗萃取率达96.89,;富锗有机相用4mol/L氢氧化钠溶液反萃锗,相比V (O )/V (W )=3∶1,反萃15 min ,经3级反萃后反萃液中锗含量为7.81 g/L,反萃率为95.37,(以渣计);锗反萃液用1∶1硫酸中和,控制终点pH为8.0~8.5,可得到品位为37.62,的富锗料,锗沉淀率为90.51,.  相似文献   

2.
对新型萃取剂G8315从湿法冶金系统的含锗沉矾后液中萃取回收锗的性能进行了研究。结果表明, 有机相中G8315的浓度、相比、萃取时间、沉矾液中硫酸浓度等因素对锗的萃取都有显著的影响。常温下萃取工艺条件为: G8315的浓度(体积分数)为10%, 相比O∶A=1∶2, 料液的硫酸浓度为45 g/L, 萃取时间为3 min。在此条件下进行单级萃取, 锗的萃取率为83.46%;反萃的最佳条件为: 氢氧化钠的浓度为6 mol/L, 相比为O∶A=2∶1, 反萃时间为2 min, 在此条件下进行两级错流反萃, 锗的反萃率高达96.5%。  相似文献   

3.
本文研究N,N二正戊基乙酰胺(DPAA)、N,N二正辛基乙酰胺(DOAA),N,N二正戊基丙酰胺(DPPA)、N,N二甲庚基乙酰胺(N503)从硝酸底液中萃取U(VI),实验分别测得单元平衡常数logβ_(10)依次为0.218,0.639,0.702和0.955。文中还测定了三辛基氧膦TOPO莘取U(VI)平衡常数logβ_(20)=2.87。本文还研究了二元体系DPAA+TOPO与N503+DPAA萃溶液萃取UO_2(NO_3)_2,实验发现有BB类二元协同萃取,其协萃平衡常数为logβ_(12)=1.03(DPAA+TOPO体系):logβ_(13)=1.36(DPAA+N503)。  相似文献   

4.
采用自制的胺类萃取剂N1633作萃取剂, 考察了其在钨萃取冶金中的性能。当有机相组成为40%N1633+40%异辛醇+磺化煤油(体积比), 在pH=8.27、相比(O/A)为1∶1、振荡时间10 min、萃取温度25 ℃时, 对WO3含量116.25 g/L的钨酸钠溶液进行萃取, 单级萃取率大于99%。绘制了N1633的萃取等温线, 经过三级萃取饱和容量达到109.03 g/L。用2.5 mol/L的氨水对负载有机相进行反萃, 相比2.5∶1时, 反萃液中WO3浓度达到174.31 g/L。绘制了负载有机相的反萃等温线, 理论上以相比1.25∶1进行四级逆流萃取可将有机相中的钨基本反萃, 反萃液中WO3的饱和反萃浓度达到202.82 g/L。采用0.6 mol/L的硫酸以相比2∶1进行酸化再生后, N1633仍具有良好的萃取性能。  相似文献   

5.
采用三辛基甲基氯化铵(N263)-磷酸三丁酯(TBP)-正辛醇-磺化煤油协同萃取体系从金矿氰化废水中富集和回收有价金属,主要研究了N263与TBP的浓度、振荡时间、水相初始pH、相比(O/A)对铜氰络合离子萃取率的影响及协同萃取反应机制。研究表明,采用N263(20 vol.%)-TBP(15 vol.%)-正辛醇(10 vol.%)-磺化煤油体系在室温,O/A为1:1,pH值为10、混相时间为5min的条件下,废水中铜离子的单级萃取率可达到为98.9%,饱和萃取容量为19576 mg/L。饱和负载有机相经1 mol/L NaOH+5 mol/L NaSCN溶液反萃,在相比(O/A)为2:1的条件下,单级反萃液中Cu离子浓度可达到23000 mg/L,实现了废水中铜氰络合离子的有效富集。萃取过程中铜氰络合离子优先与TBP结合从而失去亲水性,随后再与N263阳离子发生离子缔合反应进入有机相。  相似文献   

6.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

7.
施学金  朱云  黎元龙 《矿冶》2015,24(1):35-38
研究用TBP从铋电解液中萃取分离锑铋,考察了溶液中锑铋以单组分存在时,初始水相酸度、TBP浓度和相比对锑铋萃取分离的影响,绘制了锑铋的萃取等温线。结果表明,有机相组成为25%TBP-7%辛醇-磺化煤油,初始水相酸度为6 mol/L,萃取相比O/A=1∶1时,锑的萃取分配比最大,铋的分配比较小。对于实际铋电解液中萃取分离锑铋,铋电解液盐酸浓度为4 mol/L,相比O/A=1∶1,有机相组成为25%TBP-7%辛醇-磺化煤油时,锑的萃取率为65%;经过3级逆流萃取,锑的萃取率达94.2%。  相似文献   

8.
采用有机协同萃取剂将氧氯化锆母液中的锆萃取到有机相中得到含锆萃取物, 锆萃取物经洗涤、反萃、氨沉和灼烧得到核能级氧化锆产品。试验结果表明:当料液中游离酸酸度为5 mol/L, 有机相组成为20%TOPO+10%Cynex272+70%磺化煤油, 萃取相比为2〖DK〗∶1时, 锆铪分离效果较好, 锆萃取率达到98.68%;有机相洗涤试验中铪反洗率为97.33%, 锆损耗率仅1.25%;盐酸酸度为0.5 mol/L时, 锆反萃效果较佳, 达到98.90%。最终制得的氧化锆产品纯度达到99.90%, 铪含量仅为0.0030%。  相似文献   

9.
研究从铜冶金过程中亚砷酸还原终液铼萃余液中用N235萃取低浓度钼,最佳萃取工艺参数为有机相组成30%N235+10%仲辛醇+60%磺化煤油、相比为2∶1、常温、振荡时间7 min。在此条件下单级萃取率可达93.8%。lg D与[1/T]/(10~(-3)K~(-1))拟合曲线方程为y=0.2397x-0.7003,ΔH为1.99 k J/mol,萃取反应是放热反应。  相似文献   

10.
本文研究了从铜冶金过程中亚砷酸还原终液铼萃余液中用N235萃取低浓度钼的工艺研究,得出了最佳萃取工艺参数,即有机相组成为30%N235 10%仲辛醇 60%磺化煤油、相比为2:1、温度为常温、振荡时间7min。在此条件下经单级萃取率可达93.8%;经过热力学分析得到lgD与1/T×1000(k-1)拟合曲线方程为y=0.2397x-0.7003, ?H为1.99 KJ﹒mol-1,萃取反应是放热反应。  相似文献   

11.
谌纯  张一敏  黄晶  包申旭  杨晓 《金属矿山》2017,46(5):99-103
含钒石煤经盐酸浸出后所得浸出液通常酸度较高,p H较低。为在不调节浸出液p H的条件下,以叔胺N235为萃取剂从高浓度盐酸—钒体系中萃取钒的最佳工艺,考察了萃取剂的组成、萃原液盐酸浓度、萃取相比(O/A)、萃取时间对钒萃取率的影响,并通过FT-IR分析探讨了在不同盐酸浓度下N235萃取钒形成的萃合物结构。试验结果表明:对盐酸浓度为2 mol/L,钒浓度为1.82 g/L的模拟酸浸液,在有机相N235体积浓度为20%,萃取时间为2min,萃取温度为25℃,相比(O/A)为0.5情况下的钒单级萃取率为83.93%,三级逆流萃取钒总萃取率为98.37%。利用叔胺N235从盐酸介质中萃取钒时,均会出现三相。在萃原液盐酸浓度≥3.1 mol/L时,萃合物结构为(R_3NH)_4·(H_2O)_n·H_2V_(10)O_(28·)(HCl)x;萃原液盐酸浓度3.1 mol/L时,萃合物结构为(R_3NH)_4·(H_2O)_n·H_2V_(10)O_(28)。  相似文献   

12.
湖南某黑钨渣硫酸浸出液(硫酸的浓度为1.8 mol/L)的钪、锆元素含量分别为48.18、138.00 mg/L,为消除锆对萃取钪的影响,在萃取钪前以N235和TBP为复合萃取剂进行了除锆预萃取试验。结果表明:1在复合萃取剂N235、TBP与磺化煤油的体积比为15∶15∶70,有机相与水相相比为1.5∶1,萃取时间为5 min,萃取温度为25℃,萃取振荡频率为120 r/min情况下进行单级萃取,对应的锆、钪萃取率分别为92.03%和0.96%;在硫酸溶液浓度为5mol/L、反萃相比为3∶1、反萃时间为30 min、反萃温度为25℃、振荡频率为180 r/min情况下进行3级反萃,对应的锆、钪反萃率分别为99.23%和98.22%。因此,该工艺可高效地分离锆、钪。2再生有机相对萃原液中锆的萃取率可达91.97%,与新配制萃取剂效果接近,说明再生萃取剂可以循环利用。  相似文献   

13.
以陕西某石煤酸浸含钒上清液为原料, 先用石灰乳中和、硫代硫酸钠还原预处理, 采用P204+TBP+磺化煤油萃取体系萃取富集、纯化五氧化二钒浸出液; 采用不同酸度硫酸作反萃剂, 对负载有机相反萃取, 进行钒、铁分离。结果表明: 浸出液经石灰乳中和, 硫代硫酸钠还原, 控制溶液pH=2.5, 溶液电位为-200 mV, 当A/O=2, 经6级逆流萃取, 钒的萃取率达99%以上, 而铁萃取率仅为11%; 反萃剂酸度控制在1.0~1.25 mol/L, O/A=18, 经5级逆流反萃取, 钒的反萃取率可达99%以上, 铁的反萃取率仅为9%。反萃取水相中V2O5浓度为75.3 g/L, Fe浓度为1.2 g/L, 反萃水相中钒铁质量比为62.8, 钒铁分离效果较好, 满足后续提钒要求。  相似文献   

14.
P507从硫酸体系中萃取镓的研究   总被引:3,自引:0,他引:3  
基于P507诸多优点及镓提取现状, 对P507从硫酸体系中萃取镓进行了研究, 分别考察了料液酸度、萃取剂浓度、时间、浓度、温度等因素对萃取与反萃的影响并绘制等温线, 结果表明, 在最佳条件下, 采用15%P507(体积分数)+磺化煤油作为有机相, 按相比O/A=1∶4, 经过3级逆流萃取, 萃取率可达到98.56%, 负载用60 g/L H2SO4溶液反萃, 按相比O/A=5∶1, 经过5级逆流反萃, 反萃率达98.02%, 镓富集近20倍。  相似文献   

15.
TRPO-TBP混合体系对碱性氰化液中金的萃取   总被引:1,自引:0,他引:1  
周丽  李明玉 《矿冶工程》2010,30(3):86-89
用三烷基氧化膦(TRPO)、磷酸三丁酯(TBP)与煤油组成的混合萃取体系, 对碱性氰化浸金液中Au(Ⅰ)的萃取和反萃取进行了研究。考察了有机相中TRPO及TBP体积分数、料液中盐析剂浓度、Au(Ⅰ)浓度、pH值及萃取时间等因素对萃取率的影响, 对比了不同反萃剂对负载有机相中Au(Ⅰ)的反萃效果。结果表明, 采用8%TRPO+8%TBP+84%煤油组成的有机相, 在相比O/A=1∶1时, 对Au(Ⅰ)浓度为28.54 mg/L、盐析剂硫酸锂浓度为1.0 mol/L的碱性氰化液进行萃取时, Au(Ⅰ)的单级萃取率可达96%以上; 在体系温度为60 ℃, 用蒸馏水作反萃液对负载有机相中的Au(Ⅰ)进行反萃时, 反萃率达到94.08%。  相似文献   

16.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

17.
采用t-BAMBP+二甲苯体系对萃铯余液进行萃取分离提铷试验研究,考察了料液碱度、萃取剂浓度、萃取相比、萃取时间等因素对萃取提铷效果的影响。结果表明:在料液碱度为0.4 mol/L,有机相中t-BAMBP体积分数为30%,萃取相比VO/VA=3 : 1,洗涤相比VO'/VA'=4 : 1,常温萃取3 min的条件下,对萃铯余液进行四级萃取四级洗涤萃取模拟试验,铷的萃取率达94.6%。采用多轮萃取可进一步提高反萃液中铷的纯度,为得到高纯度铷盐提供了技术依据。   相似文献   

18.
针对磷酸三丁酯(TBP)-FeCl3萃取体系从镁锂比高的盐湖卤水分离锂镁的工艺中存在的反萃酸度高、再生有机相试剂消耗大等问题,筛选出添加二(2-乙基己基)磷酸(D2EHPA)的协萃体系。探究了有机相组成、Fe/Li摩尔比、萃取相比等因素对盐湖卤水中锂镁萃取分离效果的影响。在有机相组成为40%TBP-20%D2EHPA-40% 260#溶剂油、Fe/Li摩尔比为1.5、相比O/A=2的优化萃取条件下,单级Li+萃取率达78.56%,锂镁分离系数达46.26。使用水作为洗涤剂及反萃剂,优选了洗涤相比O/A=60及反萃相比O/A=20,单级洗涤及反萃阶段锂镁分离系数分别为46.26和22.97,取得了较好的锂镁分离效果,可为后续扩大试验与工业设计提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号