首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Based on the concept that the electron-hole separation effect caused by a different band-gap structure would improve its hydrophilicity, anatase-TiO2/Cr-doped TiO2 thin films were synthesized by DC magnetron sputtering. The optical band gaps of TiO2 thin films decreased from 3.23 to 2.95 eV with increasing Cr-doping content. Multilayer TiO2 thin films with different band gaps exhibited a superhydrophilicity under UV illumination. In particular, in anatase TiO2 (3.23 eV)/4.8% Cr-doped TiO2 (2.95 eV), the hydrophilicity, which indicated a contact angle of less than 20°, lasted for 48 h in the dark after UV illumination was discontinued. This outstanding result has rarely been reported for TiO2 thin films, which confirmed that the prominent superhydrophilicity of anatase TiO2/Cr-doped TiO2/glass could be attributed to the retardation of electron-hole recombination caused by the band-gap difference.  相似文献   

2.
A novel preparation method to synthesize TiO2/SnO2 nanocrystalline sol under mild conditions was presented. Ti(OC4H9)4 used as a precursor was hydrolyzed in the rutile SnO2 nanocrystalline sol, and in-situ formed TiO2/SnO2 nanocrystalline sol. The crystal structure, morphology and photocatalysis performance of samples were investigated. The results show that the additional rutile SnO2 nano grains serve as heterogeneous crystal nucleus and exhibite the inducing effect on TiO2 grains growth, thus leading to the changes in crystalline phase and particle morphology. In addition, the photoluminescence (PL) spectra analysis indicates that TiO2/SnO2 composite structure induces a better charge separation, and thus the photocatalytic activity of TiO2/SnO2 sol is increased significantly compared with TiO2 sol.  相似文献   

3.
The TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3 loaded composites were prepared by sol-gel method and characterized by XRD and SEM. Their photocatalytic activities were measured through the degradation of Acid Red B under solar light irradiation. The influences of TiO2 loaded content, heat-treated temperature and time on the photocatalytic activities were reviewed. The effects of irradiation time and dye initial concentration on the photocatalytic degradation were also investigated. The results showed that the photocatalytic activity can be greatly enhanced by appropriate TiO2 loaded content.  相似文献   

4.
Anodic layers of TiO2 were made with a potentiostatic setting and voltages from 1 to 90 V in 1 N sulphuric acid. The current-applied voltage characteristics of the structures Ti/TiO2/Au and Ti/TiO2/electrolyte are compared and analysed with the Schottky mechanism. The barrier heights calculated for the rectifying interfaces TiO2-Au and TiO2-electrolyte are respectively 1.2±0.1 eV and 0.88±0.05 eV. Three domains of voltage were distinguished for the anodic oxidation of titanium in the potentiostatic mode as follows: from 1 to 10 V corresponding to a natural oxide thin layer and the beginning of anodic oxidation; from 10 to 90 V corresponding to oxidation with electronic breakdown; beyond 90 V relating to oxidation accompanied by thermal breakdown.  相似文献   

5.
Sol-gel SiO2/TiO2 and TiO2/SiO2 bi-layer films have been deposited from a polymeric SiO2 solution and either a polymeric TiO2 mother solution (MS) or a derived TiO2 crystalline suspension (CS). The chemical and structural properties of MS and CS bi-layer films heat-treated at 500 °C have been investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscospy. Water contact angle measurements show that MS SiO2/TiO2 and CS TiO2/SiO2 bi-layer films exhibit a natural superhydrophilicity, but cannot maintain a zero contact angle for a long time over film aging. In contrast, CS SiO2/TiO2 bi-layer films exhibit a natural, persistent, and regenerable superhydrophilicity without the need of UV light. Superhydrophilic properties of bi-layer films are discussed with respect to the nature of the TiO2 single-layer component and arrangement of the bi-layer structure, i.e. TiO2 underlayer or overlayer.  相似文献   

6.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

7.
We report on pulsed laser deposition of TiO2 films on glass substrates in oxygen, methane, nitrogen and mixture of oxygen and nitrogen atmosphere. The nitrogen incorporation into TiO2 lattice was successfully achieved, as demonstrated by optical absorption and XPS measurements. The absorption edge of the N-doped TiO2 films was red-shifted up to ∼ 480 nm from 360 nm in case of undoped ones.The photocatalytic activity of TiO2 films was investigated during toxic Cr(VI) ions photoreduction to Cr(III) state in aqueous media under irradiation with visible and UV light. Under visible light irradiation, TiO2 films deposited in nitrogen atmosphere showed the highest photocatalytic activity, whereas by UV light exposure the best results were obtained for the TiO2 structures deposited in pure methane and oxygen atmosphere.  相似文献   

8.
TiO2 thin films for dyes photodegradation   总被引:1,自引:0,他引:1  
The aim of the present study is to investigate the influence of the TiO2 specific surface (powder, film) on the photocatalytic degradation of methyl orange. Porous TiO2 films were deposited on transparent conducting oxide substrates by spray pyrolysis deposition. The films were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy, and the UV-Vis spectroscopy. The XRD spectra of nanoporous TiO2 films revealed an anatase, crystalline structure that is known as the most suitable structure in photocatalysis. The average thickness of the films was 260 nm and the measured band gap is 3.44 eV. The influence of the operational parameters (dye concentration, contact time) on the degradation rate of the dye on TiO2 was examined. There were calculated the kinetic parameters and the process efficiency. Using thin films of TiO2 is technologically recommended but raises problems due to lowering the amount of catalyst available for the dye degradation.  相似文献   

9.
The equilibrium composition of the gaseous phase and the yield of titanium oxides in the systems TiO2cl2, TiO2seCl4, TiO2hCl and TiO2tihcl (TiO2 : Ti = 1 : 1) have been calculated with different preset values of temperature, total pressure and oxygen/halogen derivative ratio. In the systems with Cl2 and SeCl4 the presence of only one oxide phase of titanium, TiO2, was established, its amount being higher in the case of chlorine. In the TiO2-HCl system, Ti3O5 was found in the condensed phase along with the prevailing amount of TiO2. The percentage of Ti3O5 increased with the increase in temperature and initial concentration of HCl. It is shown that in the TiO2-Ti-HCl system the solid phase obtained should be TiO with a Ti2O3 admixture in an amount depending on the total pressure.  相似文献   

10.
Synthesis and characterization of P-doped TiO2 nanotubes   总被引:1,自引:0,他引:1  
Titanium dioxide (TiO2) doped with phosphorus (P) was synthesized by anodization of Ti in the mixed acid electrolyte of H3PO4 and HF and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectrum. The morphology greatly depends on the applied voltage. The as-formed nanotubes under the optimized condition, at 20 V for 2 h, are highly ordered with ~ 200 nm in length and the average tube diameter is about 100 nm. By annealing the initial samples at different temperatures, the importance of the crystalline nature is confirmed. Significantly, the peak positions of anatase in XRD patterns shifts to lower diffraction angles with an increase in the amount of H3PO4 ion. A remarkable red shift of the absorption edge has been observed for the sample formed in the electrolyte of HF and H3PO4, which is related to the introduction of P5+ into TiO2 crystallization and the possible impurity energy level formed in the TiO2 band gap. The presence of P 2p state in XPS spectrum can further confirm the P5+ which can replace a part of Ti4+ has been introduced into TiO2 crystallization. The present convenient synthesis technique can be considered to the composition of other doped oxide materials.  相似文献   

11.
Nitrogen-doped titanium dioxide thin films with visible light photoresponse were prepared by oxidation of sputtered TiNx films, whose nitrogen contents can be easily changed by controlling the volume ratio of N2/(Ar + N2) during reactive direct current (DC) magnetron sputtering process. The reference TiO2 sample was also deposited by the same method under Ar/O2 gas mixture. The as-prepared films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoemission spectroscopy, UV-vis spectrophotometry and photoelecrochemical measurements. The formation of anatase type TiO2 is confirmed by XRD. SEM measurement indicates a rough surface morphology with sharp, protruding modules after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 3.36 eV to 3.12 eV compared with the undoped one. All the N-doped samples show red shift in photoresponse towards visible region and improved photocurrent density under visible irradiance is observed for the N-doped samples.  相似文献   

12.
The influence of a reductive ammonia atmosphere on TiO2 sol-gel film structural and optical characteristics was investigated. X-ray Diffraction technique, X-ray photoelectron spectroscopy and Rutherford Back Scattering analysis were applied to study the crystallinity, oxidation state and element concentration profile of the modified films. Their optical properties were investigated by UV-Vis spectroscopy. The refractive index and extinction coefficient were obtained by fitting theoretical transmittance curves to experimental ones using Forouhi-Bloomer (FB) and Tauc-Lorentz (TL) physical models. Both models revealed slight decrease (up to 2.6-2.7 eV) of the FB and TL band gaps with increase of the treatment temperature. These results were discussed in terms of the additional energy levels creation due to the defect TiO2 structure formation during thermal treatment in reductive atmosphere.  相似文献   

13.
Large-scale fan-shaped rutile TiO2 nanostructures have been synthesized by means of a simple hydrothermal method using only TiCl4 as titanium source and chloroform/water as solvents. The physicochemical features of the fan-shaped TiO2 nanostructures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), nitrogen absorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR). Structural characterization indicates that the fan-shaped TiO2 nanostructures are composed of several TiO2 nanorods with diameters of about 5 nm and lengths of 300-350 nm. The average pore size and BET surface area of the fan-shaped TiO2 nanostructures are 6.2 nm and 59 m2/g, respectively. Optical adsorption investigation shows that the fan-shaped TiO2 nanostructures possess optical band gap energy of 3.11 eV.  相似文献   

14.
Nitrogen doped anatase TiO2 (N-TiO2) were prepared by hydrothermally treating TiN with H2O2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS), Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirmed that the hydrothermal oxidation is an effective method to prepare N-doped TiO2 anatase. The nitrogen concentration in TiO2 could be controlled by the concentration of H2O2 solution. Photocatalytic degradation of methyl orange (MO) was carried out under visible light and UV-visible light irradiation, respectively. The as-prepared optimal N-TiO2 showed higher photocatalytic activity than N-P25 and P25, and exhibited excellent reusability.  相似文献   

15.
较差的光催化产氢效率极大地阻碍了TiO2光催化剂的工业化应用。为此,本文在含有NH4VO3的磷酸盐溶液中,采用等离子体电解氧化(PEO)法制备了多孔TiO2/V2O5复合膜光催化剂,通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、X射线光电子谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对其组成、结构及光吸收性质进行了表征,并采用气相色谱评价了薄膜催化剂的光催化产氢性能,研究了电解液中NH4VO3含量对膜的结构、组成和光催化产氢性能的影响。结果表明:复合膜催化剂主要由锐钛矿和金红石型TiO2组成,具有微孔结构,V2O5主要以无定形形式存在于膜中,与TiO2有很强的相互作用,影响TiO2的晶面间距。研究发现,元素V抑制了TiO2的结晶和金红石型TiO2的形成,扩大了薄膜的光学吸收范围。针对Na2S+ Na2SO3溶液中的光催化产氢性能的研究显示,在质量浓度为1 g/L NH4VO3的电解液中制备的TiO2/V2O5薄膜的光催化活性最高,优于近年来报道的其他光催化剂。光催化重复实验表明,该复合膜催化剂具有较高的稳定性和较为恒定的光催化活性。  相似文献   

16.
The Seebeck coefficient and the electrical conductivity have been measured as functions of temperature in several compositions within the pseudobinary system TiO2VO2. It is found that the Seebeck coefficient is small and varying slowly with temperature while the dependence on temperature of the electrical conductivity is characterized by an activation energy with the value 0.24 eV.  相似文献   

17.
TiO2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process using TiCl4 as a precursor. The AFM images indicate that the surface morphology of the films is granular with 72 nm particle size. The roughness and thickness of the films are about 3 nm and 140 nm, respectively. The XRD spectrum shows polycrystalline anatase phase without any considerable impurity phase. The UV-vis spectroscopy of the films show 80-90% transmission in the visible region. The absorption edge is at 370 nm, which corresponds to 3.3 eV energy band gap. The films have a high superhydrophilicity character after being exposed to UV illumination for about 10 min. The surfaces, which were synthesized by this method, can retain their superhydrophilicity property for at least 24 h. Our results are consistent with the idea that UV-induced wetting of TiO2 surface is caused by the removal of hydrophobic layers of hydrocarbons by TiO2-mediated photooxidation, which leads to the attractive interaction of water with clean TiO2 surface. TiO2 thin films on Si(1 1 1), Si(1 0 0), and quartz substrates need less time than glass and polycrystalline Si substrates to be converted to superhydrophilic surface.  相似文献   

18.
In the present study the intestine-like binary SnO2/TiO2 hollow nanostructures are one-pot synthesized in aqueous phase at room temperature via a colloid seeded deposition process in which the intestine-like hollow SnO2 spheres and Ti(SO4)2 are used as colloid seeds and Ti-source, respectively. The novel core (SnO2 hollow sphere)-shell (TiO2) nanostructures possess a large surface area of 122 m2/g (calcined at 350 °C) and a high exposure of TiO2 surface. The structural change of TiO2 shell at different temperatures was investigated by means of X-ray diffraction and Raman spectroscopy. It was observed that the rutile TiO2 could form even at room temperature due to the presence of SnO2 core and the unique core-shell interaction.  相似文献   

19.
D. Kumar 《Thin solid films》2006,515(4):1475-1479
Ultra-thin TiO2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p3/2 peak at 455.75 eV observed for the Mo(112)-(8 × 2)-TiOx monolayer film can be assigned to Ti3+, consistent with our previous results obtained with high-resolution electron energy loss spectroscopy.  相似文献   

20.
The influence of oxygen and annealing in the presence of CdCl2 on the photoluminescence (PL) spectra of CdTe, component of SnO2/CdTe heterojunction (HJ), has been studied in a temperature range of 17-100 K. The changes in the photoluminescence spectra were studied as a function of excitation intensity. Analysis of the PL spectra was carried out with considerations of spectra obtained from CdS/CdTe heterojunctions. CdTe side PL (SnO2/CdTe HJ) consisted of 1.450 eV-DA defect band and 1.243 eV band (17 K). Annealing resulted in the disappearance of 1.243 eV band in oxygen containing samples. Interface PL for the unannealed samples consisted of mainly the 1.264 eV and a trace of the defect band. The CdCl2 treatment is responsible for an almost symmetrical 1.416 eV band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号