首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
研究木瓜蛋白酶水解大豆蛋白所得到的酶解产物的分子量分布与其发泡性能的关系。酶解产物经过分离纯化,根据标准曲线的回归方程得到,大豆多肽的分子量分别为大于5000 Da和1148 Da、501 Da三个级分,其中第二个为主要成分。通过泡沫性能测试,结果表明,分子量在2000 Da以下的酶解产物的发泡性能最好,依次为分子量在3000~5000 Da之间的产物、2000~3000 Da之间的、5000~10000 Da之间的,分子量10000 Da以上的产物的发泡性能最差。  相似文献   

2.
Analyzing molecular weight distribution of whey protein hydrolysates   总被引:1,自引:0,他引:1  
Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of whey protein hydrolysates were investigated. Whey protein hydrolysates were first gained by the alkaline protease alcalase for 7 h at temperature (50 °C), pH (8.0) and E/S (3%). The diversification of the hydrolysis degree and dissociative amino acid content was investigated during the whey hydrolysis. The dissociative amino acid content was 56.09 μmol/mL with the hydrolysis degree of 20.04%. The results of Sephadex G25 washing and high performance liquid chromatography–electrospray ionization–mass spectrometry (HPLC–ESI–MS) indicated the molecular weight distribution of whey protein hydrolysates ranged from 300 to 1400 Da, and most of whey peptide was under 1000 Da.  相似文献   

3.
Wax esters are long-chain esters that have been widely applied in premium lubricants, parting agents, antifoaming agents and cosmetics. In this study, the biocatalytic preparation of a specific wax ester, cetyl octanoate, is performed in n-hexane using two commercial immobilized lipases, i.e., Lipozyme® RMIM (Rhizomucor miehei) and Novozym® 435 (Candida antarctica). Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) are employed to evaluate the effects of reaction time (1–5 h), reaction temperature (45–65 °C), substrate molar ratio (1–3:1), and enzyme amount (10%–50%) on the yield of cetyl octanoate. Using RSM to optimize the reaction, the maximum yields reached 94% and 98% using Lipozyme® RMIM and Novozym® 435, respectively. The optimum conditions for synthesis of cetyl octanoate by both lipases are established and compared. Novozym® 435 proves to be a more efficient biocatalyst than Lipozyme® RMIM.  相似文献   

4.
The Bactigras® paraffin tulle coated with chlorhexidine is normally used for the treatment of donor-site wounds in burn patients who received split-thickness skin grafts in several centers. It has some disadvantages, such as adhesion to wound surfaces and pain from the irritation caused by this dressing. The Telfa AMD®, a non-adherent wound dressing which consists of absorbent cotton fibers impregnated with polyhexamethylene biguanide enclosed in a sleeve of thermoplastic polymers, is a new option for donor-site wound care which causes less adherence to the wound. The purpose of this study was to compare clinical efficacy of these two dressings for the management of donor-site wounds. Thirty-two patients who received split-thickness skin grafts by donor site harvesting from the thigh were enrolled in this study and randomized into two groups receiving either the Bactigras® or the Telfa AMD® wound treatment. Re-epithelialization, pain, infection and cost-effectiveness analyses were compared between both groups. The results showed that there was no significant difference in age, area of donor sites or length of hospital stays between the groups (p > 0.05). However, the day of re-epithelialization (≥90%) was significantly shorter in patients treated with the Telfa AMD® compared to the Bactigras® group (14.00 ± 3.05 vs. 9.25 ± 1.88 days for Bactigras® and Telfa AMD® groups, respectively, p < 0.001). The average pain score was also significantly lower in the Telfa AMD® group (1.57 ± 0.55 vs. 4.70 ± 1.16, p < 0.001). There was no difference in the cost of treatment between the groups (4.64 ± 1.97 vs. 5.72 ± 2.54 USD, p = 0.19). This study indicated that the Telfa AMD® was an effective dressing for the treatment of donor-site wounds.  相似文献   

5.
花生粕制备活性肽复合工艺研究   总被引:1,自引:0,他引:1  
沈瑞敏  吉义平  王金 《广东化工》2011,(8):33-34,59
利用木瓜蛋白酶和中性蛋白酶水解花生粕提取花生蛋白。研究了温度、粕水比、提取时间对多糖提取率的影响,确定最佳提糖条件为温度80℃、粕水比1:25、提取时间1h。通过正交实验研究了加酶量、液固比、水解时间对蛋白质提取率的影响。确定最佳工艺参数为加酶量3%、粕水比1:25、水解时间2h,在此条件下,蛋白质转化率为80%。最终先去糖再酶解复合工艺蛋白收率为60%,相对分子量1000Da以下的活性肽占87%。  相似文献   

6.
A variety of silver-coated dressings and some impregnated with other chemicals are now available in the market; however, there have been few studies analyzing their comparative efficacies as antimicrobial agents. Moreover, their properties for retaining an appropriate level of moisture that is critical for effective wound healing have never been reported. Five commercially available silver-containing and chlorhexidine dressings, Urgotul SSD®, Bactigras®, Acticoat®, Askina Calgitrol Ag® and Aquacel Ag®, were tested to determine their comparative antimicrobial effectiveness in vitro against five common wound pathogens, namely methicillin-sensitive and -resistant Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. Mepitel®, a flexible polyamide net coated with soft silicone, was used as a control. The zones of inhibition and both the rapidity and the extent of killing of these pathogens were evaluated. All five antimicrobial dressings investigated exerted some bactericidal activity, particularly against E. coli. The spectrum and rapidity of action ranged widely for the different dressings. Acticoat® had a broad spectrum of action against both Gram-positive and -negative bacteria. Other dressings demonstrated a narrower range of bactericidal activities. Regarding the absorption and release of moisture, Askina Calgitrol Ag® absorbed and released the most moisture from the environment. Aquacel Ag® also exhibited good moisture absorption and moisture release, but to a lower degree. The other tested dressings absorbed or released very little moisture. Askina Calgitrol Ag® and Aquacel Ag® are good alternative dressings for treating wounds with high exudates and pus. An understanding of the characteristics of these dressings will be useful for utilizing them for specific requirements under specified conditions.  相似文献   

7.
The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.  相似文献   

8.
Functional properties of proteins in corn gluten meal (CGM) can be improved by enzyme hydrolysis combined with membrane technology. CGM was treated with a protease (Alcalase), resulting in 30–50% of the proteins being converted to soluble peptides. Conversions were higher when CGM was pretreated with cysteine or sulfite. Solubility and clarity of the enzyme-modified proteins were better at higher degrees of hydrolysis (DH). Higher DH increased initial foam volume but decreased foam stability. Membrane filtration of the hydrolyzed CGM reaction mixture resulted in two peptide fractions, as determined by size-exclusion high-performance liquid chromatography. Protein solubility of the membrane-permeable fraction was 90–99% compared with 8% for unmodified proteins. Larger-pore membranes improved foaming but decreased solubility and clarity. Moisture sorption at a water activity of 0.97 was 3.75 g water per gram of enzyme-modified/ultrafiltered CGM, compared with 0.2 g/g for the unmodified CGM.  相似文献   

9.
酪蛋白-胰酶水解历程分子量变化模拟与三维表征   总被引:1,自引:1,他引:0       下载免费PDF全文
食源性活性多肽的生物活性功能具有很强的分子量依赖性,不同分子量的多肽有不同的功能。本文运用人工神经网络模拟了酪蛋白在胰酶作用下酶解全过程的分子量分布变化,并基于此模型进行了酶解历程三维表征。使用BP神经网络模拟,隐含层为2层,每层含30个节点时拟合效果最好,回归系数R2可达0.9922。将预测数据用于复杂酶解历程的三维表征,可通过该三维表征图迅速判断各集总分子量多肽区的最佳制备水解度。  相似文献   

10.
Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior hydrophilicity as well as surface charge due to the acrylic chains. Additionally, these results suggested that the porous PAAm-g-CHT scaffold may act as a potential neural cell carrier.  相似文献   

11.
The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.  相似文献   

12.
This research focuses on the proteolytic capacity of sea bass byproduct (SB) and their hypocholesterolemic activity via the cholesterol micelle formation (CMF) inhibition. SB was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. The lactic fermented SB was hydrolyzed with Protease N for 6 h under HHP to obtain the SB hydrolysates (HHP-assisted Protease N hydrolysis after fermentation, F-HHP-PN6). The supernatant was separated from the SB hydrolysate and freeze-dried. As the hydrolysis time extended to 6 h, soluble protein content increased from 187.1 to 565.8 mg/g, and peptide content increased from 112.8 to 421.9 mg/g, while inhibition of CMF increased from 75.0% to 88.4%. Decreasing the CMF inhibitory activity from 88.4% to 42.1% by simulated gastrointestinal digestion (FHHP-PN6 was further hydrolyzed by gastrointestinal enzymes, F-HHP-PN6-PP) reduced the CMF inhibitory activity of F-HHP-PN6. Using gel filtration chromatography, the F-HHP-PN6-PP was fractioned into six fractions. The molecular weight of the fifth fraction from F-HHP-PN6-PP was between 340 and 290 Da, and the highest inhibitory efficiency ratio (IER) on CMF was 238.9%/mg/mL. Further purification and identification of new peptides with CMF inhibitory activity presented the peptide sequences in Ser-Ala-Gln, Pro-Trp, and Val-Gly-Gly-Thr; the IERs were 361.7, 3230.0, and 302.9%/mg/mL, respectively.  相似文献   

13.
In this work, novel docetaxel (DTX) -loaded Tween 80-free Pluronic P123 (P123) micelles with improved therapeutic effect were developed. The freeze-dried DTX-loaded P123 micelles (DTX-micelles) were analyzed by HPLC, TEM and DLS to determine the DTX loading, micelle morphology, size, respectively. The in vitro cytotoxic activity of DTX-micelles in HepG2, A549 and malignant melanoma B16 cells were evaluated by MTT assay. The corresponding in vivo antitumor efficacy was assessed in Kunming mice bearing B16 tumor after intravenous administration. The DTX-loading and efficiency into the micelles were 2.12 ± 0.09% and 86.34 ± 3.32%, respectively. The DTX-micelles were spherical with a mean particle size of 50.7 nm and size distribution from 22 to 84 nm, which suggested that they should be able to selectively accumulate in solid tumors by means of EPR effect, with a zeta potential of −12.45 ± 3.24 mV. The in vitro release behavior of DTX from DTX-micelles followed the Weibull equation. Compared with Duopafei®, DTX-micelles showed higher cytotoxicity against HepG2 (P < 0.01), A549 (P < 0.05) and B16 (P < 0.01) cells. In addition, DTX-micelles exhibited remarkable antitumor activity and reduced toxicity on B16 tumor in vivo. The tumor inhibition rates (TIR) of DTX-micelles was 91.6% versus 76.3% of Duopafei® (P < 0.01). These results suggested that P123 micelles might be considered as an effective DTX delivery system.  相似文献   

14.
Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00‐rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was performed with pancreatic proteases to represent in vitro protein digestibility. Increasing the toasting time of RSM linearly decreased the rate of protein hydrolysis of RSM and the insoluble protein fractions. The extent of hydrolysis was, on average, 44% higher for the insoluble compared with the soluble protein fraction. In contrast, the rate of protein hydrolysis of the soluble protein fraction was 3–9‐fold higher than that of the insoluble protein fraction. The rate of hydrolysis of the insoluble protein fraction linearly decreased by more than 60% when comparing the untoasted to the 120 min toasted RSM. Increasing the toasting time elicited the formation of Maillard reaction products (furosine, Nε‐carboxymethyl‐lysine and Nε‐carboxyethyl‐lysine) and disulfide bonds in the insoluble protein fraction, which is proposed to explain the reduction in the hydrolysis rate of this fraction. Overall, longer toasting times increased the size of the peptides resulting after hydrolysis of the RSM and the insoluble protein fraction. The hydrolysis kinetics of the soluble and insoluble protein fractions and the proportion of soluble:insoluble proteins in the RSM explain the reduction in the rate of protein hydrolysis observed in the RSM with increasing toasting time.  相似文献   

15.
大豆蛋白酶解技术比较   总被引:8,自引:0,他引:8  
胡爱军  郑捷 《精细化工》2005,22(6):461-463
以大豆蛋白粉和碱性2709蛋白酶为原料,进行了超声波功率对大豆蛋白水解度的影响,以及有、无超声波作用下大豆蛋白酶解的正交优化实验。结果表明,超声波作用效果与超声波功率有关,与无超声波作用下的大豆蛋白酶解相比,40kHz、128W的超声波处理,可使大豆蛋白的水解度提高6.48%~30.86%,平均提高21.18%,有效地促进了大豆蛋白酶解。超声波作用没有改变大豆蛋白酶解的优化工艺参数,均为温度55℃、pH=10.5、ρ(底物)=5g/L、w(酶)=5%,但使各因素对水解度影响的大小顺序发生了改变。有超声波作用下各因素影响大豆蛋白水解度的大小顺序为:酶质量分数>pH>底物质量浓度>温度;无超声波作用下各因素对大豆蛋白水解度影响的大小顺序为:酶质量分数>温度>底物质量浓度>pH。  相似文献   

16.
In the present paper, the effect of β-cyclodextrin (β-CD) inclusion complexation on the solubility and enzymatic hydrolysis of naringin was investigated. The inclusion complex of naringin/β-CD at the molar ratio of 1:1 was obtained by the dropping method and was characterized by differential scanning calorimetry. The solubility of naringin complexes in water at 37 ± 0.1 °C was 15 times greater than that of free naringin. Snailase-involved hydrolysis conditions were tested for the bioconversion of naringin into naringenin using the univariate experimental design. Naringin can be transformed into naringenin by snailase-involved hydrolysis. The optimum conditions for enzymatic hydrolysis were determined as follows: pH 5.0, temperature 37 °C, ratio of snailase/substrate 0.8, substrate concentration 20 mg·mL−1, and reaction time 12 h. Under the optimum conditions, the transforming rate of naringenin from naringin for inclusion complexes and free naringin was 98.7% and 56.2% respectively, suggesting that β-CD complexation can improve the aqueous solubility and consequently the enzymatic hydrolysis rate of naringin.  相似文献   

17.
Neutrase 0.8L and N120P proteases were used for oligopeptide production from apricot almonds meal, and response surface design was carried out to optimize the effect of hydrolysis conditions on hydrolysis degree (DH) and oligopeptide yield rate. Four independent variables were used to optimize the hydrolysis process: hydrolysis temperature (X(1)), enzyme-to substrate ratio (E/S) (X(2)), substrate concentration (X(3)) and reaction time (X(4)). Statistical analysis indicated that the four variables, quadratic terms of X(1), X(3), and X(4), and the interaction terms with X(1) had a significant (p < 0.05) effect on DH. The yield rate was also significantly affected by the four variables and quadratic terms of X(1), X(2) and X(4). Two mathematical models with high determination coefficient were obtained and could be employed to optimize protein hydrolysis. The optimal hydrolysis conditions were determined as follows: hydrolysis temperature 52.5 °C; enzyme-to-substrate ratio (E/S) 7200 U/g; substrate concentration 2%; reaction time 173 min. The initial pH 6.5 and Neutrase-to-N120P dosage ratio 2:1 were fixed in this study according to the preliminary research. Under these conditions, the experimental DH and yield rate were 34.10 ± 5.25% and 72.42 ± 2.27%, respectively.  相似文献   

18.
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.  相似文献   

19.
Limited hydrolysis of soy proteins with endo- and exoproteases   总被引:6,自引:3,他引:3  
Changes in the native state and functional properties of soy protein achieved by limited proteolysis of soy flour were investigated. Different enzyme-to-substrate ratios (E/S) were used to obtain low (3–5%) and medium (5–10%) degrees of hydrolysis (DH). Six protease preparations (three with predominately exopeptidase activities and three with predominately endopeptidase activities) were evaluated, and their effects on solubility, emulsification capacity, SDS-PAGE profiles, and denaturation enthalpies were characterized. Endoproteases (Multifect® Neutral, Protex? 6L, and Multifect® P-3000) and exoproteases (Fungal Protease Concentrate, Experimental Fungal Protease #1, and Experimental Fungal Protease #2) yielded similar increases in soy protein solubility. The modifications to the soy peptide profile were similar for the three exoprotease mixtures at a 1% E/S ratio, whereas the extent of hydrolysis with Protex? 6L was more pronounced than with the two other endoproteases (Multifect® Neutral and Multifect® P-3000). The emulsification capacity of protease-modified soy flour declined regardless of DH and enzyme type (exo- or endoprotease). After hydrolysis to >4% DH, denaturation enthalpies of glycinin and β-conglycinin decreased significantly, whereas hydrolysis to lower DH did not affect these values.  相似文献   

20.
We have examined the behavioral (feeding) response of Procambarus clarkii to natural dietary items (zooplankton, live fishes, dead fishes, and fish eggs) and common components of formulated feeds used in the aquaculture industry (soybean meal, fish meal, corn meal, alfalfa meal, and vitamin C). The feeding response by P. clarkii was determined using an ordinally ranked, whole-animal bioassay that included the following behaviors: (1) movement of the maxillipeds for longer than three seconds, (2) increased movement of the walking legs with dactyl probing, (3) movement of walking legs to the mouth, and (4) orientation of the entire body towards the odor source. Feeding behavior was determined in response to intact items, bathwater containing aqueous leachates from intact items, water and methanol fractions of bathwater eluted through a C18 resin flash chromatography column, and size fractions of bathwater containing either molecules 10,000 Da or molecules >10,000 Da. All fractions tested were significantly stimulatory. Zooplankton was the most stimulatory of the natural dietary items tested. However, the C18 water fraction of the soybean meal bathwater before size fractionation (containing molecules both <10,000 and >10,000 Da) was the most stimulatory of the common feed components and more stimulatory than the zooplankton. Proximate analysis indicated that the compounds present in this fraction were ca. 51% soluble carbohydrate, 4% soluble protein, and 45% unknown (assumed to be insoluble carbohydrates, insoluble proteins, and ash). We hypothesize that the primary compounds in soybean meal responsible for eliciting a feeding response in P. clarkii are soluble carbohydrates and/or glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号