首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
通过对不锈钢网进行表面修饰改性使其转变为超疏水表面,从而实现含油废水的快速、高效油水分离。首先,以不锈钢网为基底利用壳聚糖和正硅酸乙酯(TEOS)为硅源制备的Si O2溶胶对不锈钢网进行表面涂层,然后用甲基三氯硅烷(MTCS)对修饰后的不锈钢网进行表面疏水改性,获得具有超疏水性能的不锈钢网。对制备的超疏水/亲油的不锈钢网材料表面形貌、静态接触角进行表征,并测试其油水分离效率。结果表明,不锈钢网材料具有很好的超疏水/亲油性能,水接触角测试均达到154.94°。利用该材料可很好地实现油水混合物的分离,对正癸烷/水混合物经过50次重复分离,分离效率仍能达到96.62%,并且对不同油品均呈现出良好的分离效果,展现出油水分离广阔的应用前景。  相似文献   

2.
为探究超疏水泡沫镍的稳定性及油水分离性能,采用一步电沉积法在泡沫镍表面制备超疏水膜.使用扫描电子显微镜表征膜层的微观形貌及生长过程机理,以能谱仪和X射线衍射仪分析膜层组成成分,以接触角测量仪测量疏水性能和稳定性能.结果表明,被修饰的泡沫镍基体接触角达到155.3°±5°,可以承受较好的物理冲击力,受模拟海水腐蚀影响较小...  相似文献   

3.
普通棉织物表面呈亲水性,易被污染,不具备分离油水混合物的性能。受“荷叶效应”启发,以棉织物为基底,采用种子生长法在棉织物表面构筑1层纳米银膜,使用十八烷基硫醇修饰,制备出具有超疏水性能的棉织物表面并对其表面性能进行探究,并利用其对水和油相反的润湿性对油-水混合物进行分离测试。结果表明:其分离效率达96%,在连续重复分离22次后仍保持在94%以上;改性后的棉织物表面具有优良的超疏水性(其与水的接触角达160°,表面滚动角小于10°)、耐污性及稳定性,可作为一种有效的油水分离材料。  相似文献   

4.
为了实现在极端条件下的智能油水分离,以聚苯硫醚(PPS)无纺布为基膜材料,使用正辛酸(CA)、钛酸丁酯[Ti(OBu)4]、纳米气相二氧化硅(SNPs)为改性剂,采用沉积-热压法制备出一种智能pH敏膜(PPS-CA/TiO2/SNPs);对其表面化学结构组成、形貌及亲水性进行表征分析,同时测试其pH响应性能、耐高温性能及循环使用性能等。结果表明:PPS-CA/TiO2/SNPs纤维膜具有灵敏的pH响应性,在水环境(pH=6.5)中表现出超疏水超亲油性,而在碱性水环境中(pH=12),膜表面改变为疏油和亲水;油水分离通量截留试验中氯苯、二氯乙烷通量能够达到25 000 L/(m2·h)以上,截留率在95%以上;即使经过20次循环截留实验,膜对于二氯乙烷的分离效率依然可以达到95%以上。同时,在极端条件下的测试也表明膜具有良好的稳定性,使其具备了在极端环境下应用的潜力。  相似文献   

5.
采用FeCl3的乙醇溶液刻蚀不锈钢网,进而用硬脂酸的二甲苯溶液对其进行表面修饰改性,制备具有疏水亲油表面的油水分离滤网。采用扫描电子显微镜(SEM)、红外光谱分析,接触角测试等方法对改性滤网表面进行表征,并进行油水分离实验。实验结果表明:刻蚀后的不锈钢滤网的钢丝表面粗糙度显著增大,经硬脂酸修饰后的不锈钢滤网与水的接触角达到146°,具有良好的疏水特性。改性后的滤网用于油水分离实验时,其分离效率在98%以上,分离速率快极,且具有良好的重复使用性能。  相似文献   

6.
以聚四氟乙烯乳液、聚乙烯醇和玻璃纤维为原料,采用冷冻铸造的方法制备了具有定向孔结构的油水分离材料。采用扫描电子显微镜(SEM)和接触角测量仪对所制备材料的微观结构及表面疏水特性进行表征,通过实验室自制的连续油水分离装置对所制备材料的油水分离性能进行研究。结果表明:所制备的材料具有规则排列的定向微米孔道结构,具有显著的疏水亲油特性,与水的接触角为140°。该材料具有良好的机械强度,在压差驱动下可以对油水混合物进行连续高效的分离。对包括柴油、汽油在内的8种油品和水的混合物进行测试,分离效率均达到98%以上。  相似文献   

7.
以聚偏氟乙烯(PVDF)有机膜为基底,单宁酸(TA)为胶结剂,将尖晶石NiAl2O4无机纳米颗粒均匀修饰到PVDF膜表面,制备了超亲水/水下超疏油型NiAl2O4/TA/PVDF复合膜。系统研究了NiAl2O4/TA/PVDF复合膜的结构、形貌和表面润湿性,评价了复合膜在典型的油水乳液分离中的性能。实验结果表明,NiAl2O4/TA/PVDF复合膜对稳定的油水乳液表现出优异的分离效率(分离效率均高于99%)和较高的膜通量(682~1 302 L·m-2·h-1)。此外,由于膜表面的粗糙结构和特殊润湿性,NiAl2O4/TA/PVDF复合膜具有较好的抗油污染性能,在循环8次分离水包油乳液后仍具有较高的分离效率和膜通量,表现出良好的机械性能和可再生性。本研究为构筑尖晶石基油水分离膜及其在油水分离中的应用提供了新的思路。  相似文献   

8.
通过用电沉积法在铜片表面上生长了具有双尺寸粗糙度的铜膜,并用扫描电镜(SEM)、X射线能量色散谱(EDX)、X射线衍射仪(XRD)、接触角测量仪以及电化学工作站等对其进行详细表征。结果表明,所得铜表面是由纳米片组成的微米花组成。经硬脂酸修饰后,所得铜表面具有优异的超疏水性、不粘附性和耐腐蚀性能;与水的表面接触角高达167°,滚动角低至1.8°。超疏水性能归因于铜片表面上的微纳米结构以及低表面能的硬脂酸分子。  相似文献   

9.
以自抄的高定量(135 g/m2)纸张作为基底,将蜂蜡∶棕榈蜡为7∶3的混合蜡乳液涂覆到纸基的表面,60℃下热处理纸基材料,纸基材料耐破度、挺度等得到改善;疏水性也大大提高,静态水接触角均在140°以上。文章还对纸基复合材料的油水分离性能进行了探索,实验结果表明,纸基复合材料的透气度、孔径对其油水分离效果有重要的影响。  相似文献   

10.
以苯乙烯-马来酸酐共聚物(PSMA)为原料,以N,N-二甲基甲酰胺为溶剂,在不锈钢网上通过静电纺丝法将不同质量浓度的静电纺丝液制备成无纺布状的PSMA膜,再通过喷涂氟碳表面活性剂(FS-51)改变膜对水和油的亲和性得到PSMA/FS-51膜;利用扫描电子显微镜和静态接触角等测试手段表征了所制备膜的微观形貌和表面润湿性。结果表明膜在喷涂氟碳表面活性剂后由超亲油性转变为超亲水性。当静电纺丝液质量浓度为0.45 g/mL时,获得的膜的纤维粗细最均匀,PSMA/FS-51膜的油水分离效率达到99%;当静电纺丝液质量浓度为0.50 g/mL时,制备的PSMA/FS-51膜的油水分离效率达到100%。此研究提供了一种工艺简单、高效的油水分离方法。  相似文献   

11.
传统油水分离装置能耗高、操作复杂,针对这一问题,采用等离子体气相接枝的方法,将八甲基环四硅氧烷(D4)聚合于静电纺丝制备的醋酸纤维(CA)膜表面,制备单面超疏水单面亲水的Janus型CA纤维膜。利用场发射扫描电子显微镜(FESEM)、X射线光电子能谱仪(XPS)及视频接触角测试仪等对纤维形貌、元素组成及表面接触角进行表征。结果表明:当纺丝液浓度为20 wt%,推注速度为0.20 mm/min,电压为13 kV,接收距离为20 cm时,制备所得纤维较细且粒径分布较为集中;当等离子体处理时间为8 min,功率为80 W时,Janus-CA纤维膜疏水面接触角为150.5°;将8 min、80 W等离子体处理得到的Janus-CA纤维膜用于去离子水和1,2-二溴乙烷混合液的分离,分离率达97.02%±1.25%,且膜通量达(592.59±23.40) L/(m~2·h),在经历5次分离后膜通量仍为(507.94±8.23) L/(m~2·h),分离率为85.06%±0.52%,表明其具有良好的重复利用性。该Janus纤维膜制备工艺简单,分离过程方便,可有效解决油水分离问题。  相似文献   

12.
通过亲水剂和疏油剂对PTFE平板膜进行表面处理,制备亲水疏油PTFE平板膜。采用扫描电子显微镜、孔径测试分析仪、视频接触角仪、紫外分光光度计等对亲水疏油PTFE平板膜的表面形貌、孔径、亲水性以及油水分离性能进行测试,以分析疏油剂浓度及改性顺序对膜结构和性能的影响。结果表明:疏油剂浓度的增加有利于增强膜的油水分离性能和抗污性能;先疏油改性后亲水改性时PTFE平板膜对于机油乳化油分离效果较好,且当疏油剂浓度为3.0 wt%时,油水分离的综合性能最好,水通量为2668.5 L/(m~2·h),油分子截留率为87.4%,抗污染性能最好。  相似文献   

13.
以工业级粉煤灰微珠和模数为3.3的水玻璃溶液为原料,采用盐酸沉淀法,利用非均相形核沉积原理,在微米级粉煤灰颗粒表面包覆一层纳米SiO2颗粒.通过扫描电子显微镜、X射线衍射仪、傅里叶转换红外线光谱仪等对包覆产物进行表征,制备得到了具有"核-壳"结构的微珠/SiO2复合结构颗粒,同时SiO2包覆层是以Si-O-Si键的形式结合于微珠表面并不断生长.对这种二级结构复合颗粒进行有机疏水改性,通过"涂敷法"构建超疏水性表面,表面平均接触角为152.4°,达到超疏水性能要求.  相似文献   

14.
将椰壳纤维经过碱处理、甲基三甲氧基硅烷(MTMS)疏水化改性制备了具有孔隙结构的疏水椰壳纤维吸附材料(HCF)。通过SEM、EDS、FT-IR、XRD对HCF的表面形貌及化学结构进行了表征,通过静态水接触角研究了HCF的表面润湿性能。结果表明,HCF的静态水接触角为126°,在不同pH的溶液中水接触角都保持在125°以上。HCF对原油、泵油、葵花籽油、机油、大豆油、四氯化碳等油类及有机溶剂的吸附倍率为8.49~12.88 g/g,在3 min内达到吸附饱和,具有较好的吸附量和较快的吸附速率。在0.09 MPa压力下,HCF可用于水上浮油的连续分离过程,分离通量为57 326.14 L/(m2·h),分离效率为97.02%,具有一定的处理大量油水混合物的能力。HCF经过10次循环后依然保持良好的吸附性能,具有很好的使用稳定性。  相似文献   

15.
为改善热致相分离(TIPS)聚偏氟乙烯(PVDF)膜的性能,以邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二辛酯(DOP)组成混合稀释剂,以纳米SiO_2、石墨烯为添加改性剂,采用TIPS法制备了PVDF中空纤维杂化膜.通过扫描电子显微镜(SEM)观察所得膜形貌,并对其渗透性能及机械性能进行测试表征,研究了纳米SiO_2、石墨烯添加量对PVDF中空纤维膜结构和性能的影响.结果表明:所得膜为均质海绵状孔结构,膜外表面较光滑,内表面粗糙且疏松多孔,随纳米SiO_2添加量的增加膜内外表面水接触角均增大,膜纯水通量先减小后增大,膜孔隙率均大于70%,膜断裂强度和断裂伸长率均先增大后减小;同时添加质量分数分别为3%和0.5%的纳米SiO_2和石墨烯,石墨烯以片层形式均匀分散在膜内,膜纯水通量可达418 L/(m~2·h),相较于原膜断裂强度提高12.6%,断裂伸长率提高89.2%.  相似文献   

16.
为了制备一种超疏水亲油材料基于纤维素可生物降解的环保特性,采用废棉制备了超疏水亲油的甲基三氯硅烷(MTCS)/mSiO2/纳米微晶纤维素(NCC)气凝胶。首先将废棉打碎酸解成NCC,再用KH560对SiO2进行改性,然后以NCC和mSiO2为原料,制备mSiO2/NCC复合气凝胶,最后以MTCS为疏水改性剂对m SiO2/NCC气凝胶改性,制备成超疏水亲油的MTCS/mSiO2/NCC气凝胶,并使用红外光谱仪、X射线衍射仪、扫描电子显微镜、接触角测试仪,对超疏水亲油材料的形貌、结构及表面浸润进行表征。结果表明:制备得到了一种三维多孔、结果稳定的超疏水亲油MTCS/m SiO2/NCC气凝胶,静态水接触角最高达150.97°,对食用油、机油和石蜡油的最大吸油倍率分别为60.00 g/g、58.15 g/g和43.27 g/g,能够快速分离油水混合物,具备良好的超疏水亲油性能。  相似文献   

17.
镁和镁合金的高化学活性以及氧化膜的疏松多孔导致镁合金的耐腐蚀性能较差。以AZ31B镁合金为基体,采用水热法在镁合金表面制备出二氧化铈/硬脂酸超疏水涂层,重点研究了水热反应温度和时间对涂层形貌及耐腐蚀性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能谱(EDS)对镁合金表面涂层的相组成、微观形貌及元素组成进行测试,通过电化学测试来表征二氧化铈/硬脂酸超疏水涂层的耐腐蚀性能,利用超疏水测试检验涂层的疏水性。结果表明:当水热反应温度为120℃,反应时间为6 h时,可以在镁合金表面制备出均匀的涂层,该涂层由大量细小球形颗粒紧密连接而成,涂层致密完整,厚度约为13μm,涂层主要组成相为CeO2。电化学测试结果表明:与空白镁合金基体相比,二氧化铈/硬脂酸复合涂层的腐蚀电流密度为5.36×10-6 A·cm-2,降低了一个数量级,且其电化学容抗弧直径明显增大,说明该涂层可以显著提高镁合金基体的耐腐蚀性能。同时,该涂层还具有较好的超疏水性,水滴静态接触角达161°。  相似文献   

18.
通过氟硅单体1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(简称F3)的阴离子开环聚合(ROP)、苯乙烯(St)的原子转移自由基聚合(ATRP),合成了含氟硅嵌段共聚物PMTFPS-b-PS,并将其以四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)为溶剂进行静电纺丝。采用接触角测量仪(CAM)、扫描电镜(SEM)、X射线光电子能谱(XPS)研究PMTFPSb-PS电纺膜退火前后的疏水性、微观形貌以及表面化学组成。结果表明:电纺纤维的水接触角可达152.6°,即达到超疏水的效果,经过120℃退火处理后电纺膜的表面光滑,接触角有所减小,但其水接触角仍远高于共聚物溶剂膜的接触角。  相似文献   

19.
用乳液聚合方法合成了含硅氟苯丙乳液,用sol-gel法制备出不同尺寸的纳米、微米SiO2,并用氨基硅烷偶联剂(KH550)对SiO2粒子进行表面改性,改性后的SiO2粒子加入含硅氟苯丙乳液中制得复合涂层。使用透射电镜(TEM)、扫描电镜(SEM)、红外光谱(FTIR)、水接触角(WCA)测试,研究了含硅氟苯丙乳液合成和SiO2表面改性的机理,考察了涂层表面的微观形貌与润湿状态的关系,结果表明涂层水接触角153°,为超疏水表面,而且能在-10~90℃的冷、热处理后保持超疏水性能。热重分析(TGA)显示,复合涂层热稳定性良好。  相似文献   

20.
以魔芋葡甘聚糖、淀粉、玉米秸秆纤维为原料制备了三维多孔魔芋葡甘聚糖基气凝胶(KA),通过十六烷基三甲氧基硅烷(HDTMS)对其进行改性制备了疏水魔芋葡甘聚糖基气凝胶(HKA),并研究了改性条件对HKA疏水性的影响。采用FT-IR、SEM和EDS等对HKA进行表征,并研究了其对不同油品的吸附性能和油水分离性能。当HDTMS用量为2%、改性时间为1.5 h、改性温度为110℃时,HKA的水接触角为141°,疏水性最佳;制备的HKA对正己烷、柴油、氯仿等油品的吸附倍率为21.7倍~46.5倍,对正己烷/水乳液的油水分离效率高达90.8%,具有较高的吸附性能和优良的选择性吸附效果;HKA对乳液中甲苯的吸附行为符合准一级吸附理论模型,吸附容量达904.60 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号