首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of antibody affinity by a non-contact residue.   总被引:4,自引:1,他引:3       下载免费PDF全文
Antibody LB4, produced by a spontaneous variant of the murine anti-digoxin monoclonal antibody 26-10, has an affinity for digoxin two orders of magnitude lower than that of the parent antibody due to replacement of serine with phenylalanine at position 52 of the heavy chain variable region (Schildbach, J.F., Panka, D.J., Parks, D.R., et al., 1991, J. Biol. Chem. 266, 4640-4647). To examine the basis for the decreased affinity, a panel of engineered antibodies with substitutions at position 52 was created, and their affinities for digoxin were measured. The antibody affinities decreased concomitantly with increasing size of the substituted side chains, although the shape of the side chains also influenced affinity. The crystal structure of the 26-10 Fab complexed with digoxin (P.D.J., R.K. Strong, L.C. Sieker, C. Chang, R.L. Campbell, G.A. Petsko, E.H., M.N.M., & S.S., submitted for publication) shows that the serine at heavy chain position 52 is not in contact with hapten, but is adjacent to a tyrosine at heavy chain position 33 that is a contact residue. The mutant antibodies were modeled by applying a conformational search procedure to position side chains, using the 26-10 Fab crystal structure as a starting point. The results suggest that each of the substituted side chains may be accommodated within the antibody without substantial structural rearrangement, and that none of these substituted side chains are able to contact hapten. These modeling results are consistent with the substituents at position 52 having only an indirect influence upon antibody affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The crystal structure of the Fab fragment of the murine monoclonal anti-dinitrophenyl-spin-label antibody AN02 complexed with its hapten has been solved at 2.9 A resolution using a novel molecular replacement method. Prior to translation searches, a large number of the most likely rotation function solutions were subjected to a rigid body refinement against the linear correlation coefficient between intensities of observed and calculated structure factors. First, the overall orientation of the search model and then the orientations and positions of the four Fab domains (VH, VL, CH1 and CL) were refined. This procedure clearly identified the correct orientation of the search model. The refined search model was then subjected to translation searches which unambiguously determined the enantiomer and position in the unit cell of the crystal. The successful search model was refined 2.5 A crystal structure of the Fab fragment of HyHel-5 from which non-matching residues in the variable domains had been removed. HyHel-5 is a murine monoclonal antibody whose heavy and light chains are of the same subclass (gamma 1, kappa, respectively) as AN02. After molecular replacement the structure of the AN02 Fab has been refined using simulated annealing in combination with model building and conjugate gradient refinement to a current crystallographic R-factor of 19.5% for 12,129 unique reflections between 8.0 and 2.9 A. The root-mean-square (r.m.s.) deviation from ideal bond lengths is 0.014 A, and the r.m.s. deviation from ideal bond angles is 3.1 degrees. The electron density reveals the hapten sitting in a pocket formed by the loops of the complementarity determining region. The dinitrophenyl ring of the hapten is sandwiched between the indole rings of Trp96 of the heavy-chain and Trp91 of the light-chain. The positioning of the hapten and general features of the combining site are in good agreement with the results of earlier nuclear magnetic resonance experiments.  相似文献   

3.
Comparison between the structures and solvent-accessible surfaces of the antigen-binding fragments of two murine anti-p-azophenylarsonate monoclonal antibodies, one bearing a major cross-reactive idiotype of A/J strain mice (36-71) and one lacking the idiotype (R19.9; Lascombe et al., 1989), highlight the structural basis for the determination of hapten affinity and idiotypy. Since the sequence of R 19.9 is identical with the germline-encoded sequence at 16 positions in both heavy-chain and light-chain variable regions where somatic mutations and junctional differences have occurred to produce the 36-71 sequence, the structure of R 19.9 can be used to model the structure of the germline-encoded antibody (36-65) in the regions around these sites. These 16 sequence differences exclude the third heavy-chain complementarity-determining region because R 19.9 utilizes a D gene segment not associated with the predominant idiotype, which is 4 residues longer than the canonical D gene segment utilized in the sequences of 36-71 and 36-65. This difference between the structures of R 19.9 and 36-71 does not affect the validity of using the structure of R 19.9 to model the structure of 36-65 since the third heavy-chain complementarity-determining region is highly solvent-exposed in both 36-71 and R 19.9, and does not interact with any of these 16 sites. Comparing the structures of 36-71 and R 19.9 suggests that only three of the differences in the heavy-chain sequences, and three of the differences in the light-chain sequences of 36-71 and 36-65, increase the affinity for hapten.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The three-dimensional structure of the Fab fragment of an anti-2-phenyloxazolone monoclonal antibody (NQ10/12.5) in its native and complexed forms has been determined at 2.8 and 3.0 A resolution, respectively. Identification of hapten-contacting residues has allowed us to evaluate the contribution of individual somatic point mutations to maturation of the immune response. In particular, amino acid residues 34 and 36 of the light chain, which are frequently mutated in antibodies with increased affinity for 2-phenyloxazolone, are shown to interact directly with the hapten. We propose that the strict maintenance of certain amino acid sequences at the potentially highly variable VL-JL and VH-D-JH junctions observed among anti-2-phenyloxazolone antibodies is due largely to structural constraints related to antigen recognition. Finally, the three-dimensional model of NQ10/12.5, which uses the typical light chain of primary response anti-2-phenyloxazolone antibodies but a different heavy chain, allows an understanding of how, by preserving key contact residues, a given heavy chain may be replaced by another, apparently unrelated one, without loss of hapten binding activity and why the V kappa Ox1 germline gene is so frequently selected amongst the other known members of this family.  相似文献   

5.
S McManus  L Riechmann 《Biochemistry》1991,30(24):5851-5857
Two-dimensional (2D) 1H NMR spectroscopy was used to study the hapten-binding site of a recombinant antibody Fv fragment expressed in Escherichia coli. Point mutations of residues in the CDR loops of the Fv fragment were designed in order to investigate their influence on hapten binding and to make site-specific assignments of aromatic NMR proton signals. Two tyrosines giving NOEs to the ligand 2-phenyloxazolone were identified, residue 33 in CDR1 of the heavy chain and residue 32 in CDR1 of the light chain. The benzyl portion of 2-phenyloxazolone is located between these two residues. The binding site is close to the surface of the Fv fragment. Comparison with a different anti-2-phenyloxazolone antibody, the crystal structure of which has recently been solved, shows that the general location of the hapten-binding site in both antibodies is similar. However, in the crystallographically solved antibody, the hapten is bound farther from the surface in a pocket created by a short CDR3 loop of the heavy chain. In the binding site identified in the Fv fragment studied in this report, this space is probably filled by the extra seven residues of the CDR3.  相似文献   

6.
Antibody 15A9, raised with 5'-phosphopyridoxyl (PPL)-N(epsilon)-acetyl-L-lysine as hapten, catalyzes the reversible transamination of hydrophobic D-amino acids with pyridoxal 5'-phosphate (PLP). The crystal structures of the complexes of Fab 15A9 with PPL-L-alanine, PPL-D-alanine, and the hapten were determined at 2.3, 2.3, and 2.5A resolution, respectively, and served for modeling the complexes with the corresponding planar imine adducts. The conformation of the PLP-amino acid adduct and its interactions with 15A9 are similar to those occurring in PLP-dependent enzymes, except that the amino acid substrate is only weakly bound, and, due to the immunization and selection strategy, the lysine residue that covalently binds PLP in these enzymes is missing. However, the N-acetyl-L-lysine moiety of the hapten appears to have selected for aromatic residues in hypervariable loop H3 (Trp-H100e and Tyr-H100b), which, together with Lys-H96, create an anion-binding environment in the active site. The structural situation and mutagenesis experiments indicate that two catalytic residues facilitate the transamination reaction of the PLP-D-alanine aldimine. The space vacated by the absent L-lysine side chain of the hapten can be filled, in both PLP-alanine aldimine complexes, by mobile Tyr-H100b. This group can stabilize a hydroxide ion, which, however, abstracts the C alpha proton only from D-alanine. Together with the absence of any residue capable of deprotonating C alpha of L-alanine, Tyr-H100b thus underlies the enantiomeric selectivity of 15A9. The reprotonation of C4' of PLP, the rate-limiting step of 15A9-catalyzed transamination, is most likely performed by a water molecule that, assisted by Lys-H96, produces a hydroxide ion stabilized by the anion-binding environment.  相似文献   

7.
A Rao  W W Ko  S J Faas  H Cantor 《Cell》1984,36(4):879-888
Inducer T-cell clones reactive to the p-azobenzenearsonate (arsonate) hapten possess binding sites for radioactive arsanylated proteins, which are not present on clones with other antigen specificities. Binding occurred in the absence of histocompatibility proteins. Binding was specific for the p-azobenzenearsonate hapten, since unconjugated proteins and proteins conjugated to the nonactivating o-azobenzenearsonate hapten neither bound to the clones nor competed binding of radioactive antigen. One of the clones was studied in more detail, using a panel of structural analogs of arsonate conjugated to the carrier protein ovalbumin. All conjugates that activated the clone in the presence of antigen-presenting cells also competed binding of radioactive antigen in the absence of antigen-presenting cells. Nonactivating conjugates did not compete binding. Based on evidence in this and the succeeding paper (Rao et al., accompanying paper), we suggest that these arsonate-binding sites may include the physiological antigen receptors of arsonate-reactive T-cell clones.  相似文献   

8.
The crystal structure of a fluorescein-Fab (4-4-20) complex was determined at 2.7 A resolution by molecular replacement methods. The starting model was the refined 2.7 A structure of unliganded Fab from an autoantibody (BV04-01) with specificity for single-stranded DNA. In the 4-4-20 complex fluorescein fits tightly into a relatively deep slot formed by a network of tryptophan and tyrosine side chains. The planar xanthonyl ring of the hapten is accommodated at the bottom of the slot while the phenylcarboxyl group interfaces with solvent. Tyrosine 37 (light chain) and tryptophan 33 (heavy chain) flank the xanthonyl group and tryptophan 101 (light chain) provides the floor of the combining site. Tyrosine 103 (heavy chain) is situated near the phenyl ring of the hapten and tyrosine 102 (heavy chain) forms part of the boundary of the slot. Histidine 31 and arginine 39 of the light chain are located in positions adjacent to the two enolic groups at opposite ends of the xanthonyl ring, and thus account for neutralization of one of two negative charges in the haptenic dianion. Formation of an enol-arginine ion pair in a region of low dielectric constant may account for an incremental increase in affinity of 2-3 orders of magnitude in the 4-4-20 molecule relative to other members of an idiotypic family of monoclonal antifluorescyl antibodies. The phenyl carboxyl group of fluorescein appears to be hydrogen bonded to the phenolic hydroxyl group of tyrosine 37 of the light chain. A molecule of 2-methyl-2,4-pentanediol (MPD), trapped in the interface of the variable domains just below the fluorescein binding site, may be partly responsible for the decrease in affinity for the hapten in MPD.  相似文献   

9.
The replacement of Arg-54 by Ala in the active site of Escherichia coli aspartate transcarbamoylase causes a 17,000-fold loss of activity but does not significantly influence the binding of substrates or substrate analogs (Stebbins, J.W., Xu, W., & Kantrowitz, E.R., 1989, Biochemistry 28, 2592-2600). In the X-ray structure of the wild-type enzyme, Arg-54 interacts with both the anhydride oxygen and a phosphate oxygen of carbamoyl phosphate (CP) (Gouaux, J.E. & Lipscomb, W.N., 1988, Proc. Natl. Acad. Sci. USA 85, 4205-4208). The Arg-54-->Ala enzyme was crystallized in the presence of the transition state analog N-phosphonacetyl-L-aspartate (PALA), data were collected to a resolution limit of 2.8 A, and the structure was solved by molecular replacement. The analysis of the refined structure (R factor = 0.18) indicates that the substitution did not cause any significant alterations to the active site, except that the side chain of the arginine was replaced by two water molecules. 31P-NMR studies indicate that the binding of CP to the wild-type catalytic subunit produces an upfield chemical shift that cannot reflect a significant change in the ionization state of the CP but rather indicates that there are perturbations in the electronic environment around the phosphate moiety when CP binds to the enzyme. The pH dependence of this upfield shift for bound CP indicates that the catalytic subunit undergoes a conformational change with a pKa approximately 7.7 upon CP binding. Furthermore, the linewidth of the 31P signal of CP bound to the Arg-54-->Ala enzyme is significantly narrower than that of CP bound to the wild-type catalytic subunit at any pH, although the change in chemical shift for the CP bound to the mutant enzyme is unaltered. 31P-NMR studies of PALA complexed to the wild-type catalytic subunit indicate that the phosphonate group of the bound PALA exists as the dianion at pH 7.0 and 8.8, whereas in the Arg-54-->Ala catalytic subunit the phosphonate group of the bound PALA exists as the monoanion at pH 7.0 and 8.8. Thus, the side chain of Arg-54 is essential for the proper ionization of the phosphonate group of PALA and by analogy the phosphate group in the transition state. These data support the previously proposed proton transfer mechanism, in which a fully ionized phosphate group in the transition state accepts a proton during catalysis.  相似文献   

10.
We have tested several structurally related haptens, conjugated to ovalbumin, for their effect on activation of an inducer T-cell clone reactive to the pazobenzenearsonate (arsonate) hapten. Low concentrations of some analogs inhibited DNA synthesis and lympkokine production by the clone in response to arsanylated antigen, but not in response to the lectin concanavalin A. Inhibition was specific for this clone, since the response of clones reactive to other antigens was not blocked. Inhibition may result from competition of these analogs with arsonate at a site on the T cell. The effectiveness of blocking by arsonate analogs parallels their ability to bind to a previously described arsonate-binding site on the clone (Rao et al., accompanying paper). We suggest that the binding and blocking assays detect the same physiological arsonate-recognition site on the clone, and hence that the cell-surface arsonatebinding sites we have described mediate its physiological response to antigen.  相似文献   

11.
Pyridoxamine-pyruvate aminotransferase (PPAT; EC 2.6.1.30) is a pyridoxal 5'-phosphate-independent aminotransferase and catalyzes reversible transamination between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The crystal structure of PPAT from Mesorhizobium loti has been solved in space group P4(3)2(1)2 and was refined to an R factor of 15.6% (R(free) = 20.6%) at 2.0 A resolution. In addition, the structures of PPAT in complexes with pyridoxamine, pyridoxal, and pyridoxyl-L-alanine have been refined to R factors of 15.6, 15.4, and 14.5% (R(free) = 18.6, 18.1, and 18.4%) at 1.7, 1.7, and 2.0 A resolution, respectively. PPAT is a homotetramer and each subunit is composed of a large N-terminal domain, consisting of seven beta-sheets and eight alpha-helices, and a smaller C-terminal domain, consisting of three beta-sheets and four alpha-helices. The substrate pyridoxal is bound through an aldimine linkage to Lys-197 in the active site. The alpha-carboxylate group of the substrate amino/keto acid is hydrogen-bonded to Arg-336 and Arg-345. The structures revealed that the bulky side chain of Glu-68 interfered with the binding of the phosphate moiety of pyridoxal 5'-phosphate and made PPAT specific to pyridoxal. The reaction mechanism of the enzyme is discussed based on the structures and kinetics results.  相似文献   

12.
A model structure has been constructed for a monoclonal anti-dinitrophenyl antibody. The antibody, ANO2, has been sequenced and cloned (Anglister, J., Frey, T., & McConnell, H.M., 1984, Biochemistry 23, 1138-1142). Its amino acid sequence shows striking homology with the anti-lysozyme Fab fragments HyHel5 (83%) and HyHel10 (73%). Based on this homology, a model for the ANO2 variable heavy and variable light chain framework was constructed using a hybrid of the HyHel5 light chain and the HyHel10 heavy chain backbone, omitting the hypervariable loops. These coordinates were used as scaffolds for the model building of ANO2. The CONGEN conformational sampling algorithm (Bruccoleri, R.E. & Karplus, M., 1987, Biopolymers 26, 127-196) was used to model the six hypervariable loops that contain the antigen-combining site. All the possible conformations of the loop backbones were constructed and the best loop structures were selected using a combination of the CHARMM potential energy function and evaluation of the solvent-accessible surface area of the conformers. The order in which the loops were searched was carried out based on the relative locations of the loops with reference to the framework of the beta-barrel, namely, L2-H1-L3-H2-H3-L1. The model structures thus obtained were compared to the high resolution X-ray structure (Brünger, A.T., Leahy, D.J., Hynes, T.R., & Fox, R.O., 1991, J. Mol. Biol. 221, 239-256).  相似文献   

13.
We report for the first time the affinity maturation of Fab antibody fragments using fluorescent-activated cell sorting (FACS) of yeast-displayed repertoires. A single yeast display vector which enables the inducible expression of an anchored heavy chain and a soluble light chain has been constructed. The assembly and functional display on the yeast cell surface of Fab antibodies specific for different protein targets has been demonstrated by flow cytometry and immunofluorescence microscopy. We have affinity matured a Fab antibody specific for the tetravalent antigen streptavidin using FACS of yeast-displayed repertoires diversified by error-prone polymerase chain reaction. A panel of variants with up to 10.7-fold improvement in affinity was obtained after selection. Two leading clones, R2H10 (3.2 nM) and R3B1 (5.5 nM), had mutations in light chain complementarity determining region 1 LC-CDR1 (H34R) and LC-CDR3 (Y96H or Y96F) and gave a 10.7-fold and 6.3-fold affinity improvement over the starting antibody, respectively. The ability to efficiently affinity mature Fab antibodies is an important component of the antibody development pipeline and we have shown that yeast display is an efficient method for this purpose.  相似文献   

14.
A testosterone binding scFv antibody was isolated from a naïve human library with a modest size of 108 clones. The crystal structure of the Fab fragment form of the 5F2 antibody clone complexed with testosterone determined at 1.5 Å resolution shows that the hapten is bound deeply in the antibody binding pocket. In addition to the interactions with framework residues only CDR‐L3 and CDR‐H3 loops interact with testosterone and the heavy chain forms the majority of the contacts with the hapten. The testosterone binding site of the 5F2 antibody with a high abundance of aromatic amino acid residues shows similarity with an in vitro affinity matured antibody having around 300 times higher affinity. The moderate affinity of the 5F2 antibody originates from the different orientation of the hapten and few light chain contacts. This is the first three‐dimensional structure of a human steroid hormone binding antibody that has been isolated from a naïve human repertoire. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The affinity of an antibody for its ligand 2-phenyloxazolone was improved by protein design. For the design two-dimensional nuclear magnetic resonance spectroscopy, protein engineering and molecular modelling were used in an interactive scheme. Initially the binding site was localized with the help of transferred nuclear Overhauser enhancement signals from two, site specifically assigned tyrosine side-chains in the complementarity-determining regions of the antibody to the ligand 4-glycyl-2-phenyloxazolone. On their basis the hapten was placed into a model of the Fv-fragment built according to the principles of canonical antibody structures. From the model, unfavourable contacts between hapten and an aspartyl side-chain in complementarity-determining region 3 of the heavy chain were predicted. Substitution of the aspartyl residue by alanine resulted in a threefold increase in affinity of the antibody Fv-fragment for two hapten derivatives when compared with the wild-type. Nuclear magnetic resonance analysis of the improved Fv-fragment revealed an interaction between the alpha-carbon proton of alanyl residue with the ligand, which was not seen for the aspartyl residue. This interaction is not entirely in accordance with the model, which predicts an interaction between the side-chain of this residue and the hapten. However, it shows that by combined use of nuclear magnetic resonance analysis and molecular modelling, a residue that is critical for antigen binding was identified, whose mutation allowed the design of an improved antibody combining site.  相似文献   

16.
Antibodies to the autoantigen transglutaminase 2 (TG2) are a hallmark of celiac disease. We have studied the interaction between TG2 and an anti-TG2 antibody (679-14-E06) derived from a single gut IgA plasma cell of a celiac disease patient. The antibody recognizes one of four identified epitopes targeted by antibodies of plasma cells of the disease lesion. The binding interface was identified by small angle x-ray scattering, ab initio and rigid body modeling using the known crystal structure of TG2 and the crystal structure of the antibody Fab fragment, which was solved at 2.4 Å resolution. The result was confirmed by testing binding of the antibody to TG2 mutants by ELISA and surface plasmon resonance. TG2 residues Arg-116 and His-134 were identified to be critical for binding of 679-14-E06 as well as other epitope 1 antibodies. In contrast, antibodies directed toward the two other main epitopes (epitopes 2 and 3) were not affected by these mutations. Molecular dynamics simulations suggest interactions of 679-14-E06 with the N-terminal domain of TG2 via the CDR2 and CDR3 loops of the heavy chain and the CDR2 loop of the light chain. In addition there were contacts of the framework 3 region of the heavy chain with the catalytic domain of TG2. The results provide an explanation for the biased usage of certain heavy and light chain gene segments by epitope 1-specific antibodies in celiac disease.  相似文献   

17.
To assess the impact of various heavy and light chain mutations on p-azophenylarsonate binding, murine antibodies have been produced in insect cells (SF9) utilizing a baculovirus expression system. When expressed in this system, an antibody composed of a canonical CRIA+ heavy and light chain can bind antigen and express idiotype indistinguishably from analogous hybridoma-derived antibodies. Antibodies comprised of either light chains mutant at the V-J junction or heavy chains mutant at the V-D junction were found to be incapable of binding arsonate. In addition, substitutions in the first and second complementarity determining regions of the heavy chain were shown to play a role in arsonate binding, most likely related to affinity maturation targeted at the carrier protein. These results confirm the obligatory role that junctional diversity plays in the generation of arsonate-specific antibodies, as well as extend our understanding of the role of other variable region amino acids in arsonate binding.  相似文献   

18.
The first amino acid residue of the second framework region in all antibody H and L chain V regions sequenced to date is invariably tryptophan. To test whether this invariance is essential to proper domain folding and generation of a functional antibody, the tryptophan residue in the heavy chain V region of a mouse anti-p-azophenylarsonate antibody was converted to an alanine residue by oligonucleotide-directed mutagenesis of the H chain gene. The mutant gene was transfected into mouse hybridoma cells that produce the homologous L chain, and the resulting mutant antibody was purified from the cell supernatant. It was shown to have essentially the same reactivity as wild type toward a series of anti-idiotypic antibodies and to bind Ag with a Ka similar to that of wild type.  相似文献   

19.
The refined structure of the Fab fragment of the monoclonal antibody CRIS-I (IgG2a kappa) against the leukocyte differentiation antigen CD5, determined at 1.9 A resolution with an agreement R-factor of 18.3%, reveals a variant of the canonical conformations proposed for the light chain complementarity determining region L3 (CDR-L3). This is the first Fab structure available with a kappa light chain in which the CDR-L3 lacks the key proline residue in either position 94 or 95. The conformation found could be significant for about 10% of the murine IgG molecules with kappa light chains without proline in their CDR-L3 sequences.  相似文献   

20.
The three-dimensional structure of a complex of an Fab from a murine IgG2b(lambda) antibody (NC10.14) with a high potency sweet tasting hap- ten, N-(p-cyanophenyl)-N'-(diphenylmethyl)-N"-(carboxymethyl)guan idine (NC174), has been determined to 2.6 A resolution by X-ray crystallography. This complex crystallized in the triclinic space group P1, with two molecules in the asymmetric unit. In contrast to a companion monoclonal antibody (NC6.8) with a kappa-type light chain and similar high affinity for the NC174 ligand, the NC10.14 antibody possessed a large and deep antigen combining site bounded primarily by the third complementarity-determining regions (CDR3s) of the light and heavy chains. CDR3 of the heavy chain dominated the site and its crown protruded into the external solvent as a type 1' beta-turn. NC174 was nested against HCDR3 and was held in place by two tryptophan side-chains (L91 and L96) from LCDR3. The diphenyl rings were accommodated on an upper tier of the binding pocket that is largely hydrophobic. At the floor of the site, a positively charged arginine side-chain (H95) stabilized the orientation of the electronegative cyano group of the hapten. The negative charge on the acetate group was partially neutralized by a hydrogen bond with the phenolic hydroxyl group of tyrosine H58. Comparisons of the modes of binding of NC174 to the NC6.8 and NC10.14 antibodies illustrate the enormous structural and mechanistic diversity manifest by immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号