首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于森林资源二类调查数据,运用生物量转换因子法和单位面积平均生物量法,估算西藏自治区扎囊县森林生物量,再乘以含碳系数估算森林碳储量。根据生物群落演替的顶级理论和空间代替时间法,以成熟林碳储量作为森林生物量碳容量参照,应用森林生物量碳容量与当前( 或某一年) 森林碳储量的差值估算森林固碳潜力。结果表明,扎囊县森林植被碳储量为768 751.91 t。灌木林是青藏高原的原生植被,碳储量占森林碳储量的84%,发挥着重要的固碳作用。扎囊县森林资源以发挥生态防护功能为主要目的,有利于森林自然生长积累碳储量,防护林面积和碳储量占森林面积和碳储量比例均高达99%。乔木林碳储量按起源以人工林为主,占91%;按树种以柳树和杨树为主,占90%;在龄组方面,中龄林、近熟林和成熟林碳储量较大,占88%。随着龄组增大,从幼龄林、中龄林、近熟林、成熟林到过熟林,碳密度依次增大,从1.17 t/hm2到55.67 t/hm2。乔木幼龄林、中龄林和近熟林在乔木林面积中占88%,但是碳密度远低于乔木成熟林的平均碳密度40.28 t/hm2。随着乔木林从幼龄林逐步成长为成熟林,碳储量将显著增大。乔木林固碳潜力为251 782.90 t,是乔木林碳储量的2.21倍。宜林地、无立木林地、未成林造林地和苗圃地固碳潜力与面积大小正相关,固碳潜力为365 947.81 t。相应的措施可以进一步提高森林碳汇:封山(沙)育林等措施促进灌木林资源发展,稳定并提高灌木林面积和覆盖度;全面提升森林经营管理水平,提高森林资源质量;继续推进重点林业工程建设,因地制宜开展人工造林和封山育林,提升森林资源培育水平,确保人工造林成效。  相似文献   

2.
孟祥江      何丙辉    马正锐  王蕾  何邦亮 《西北林学院学报》2018,33(5):75-81
对2005年和2013年2个年度遥感大样地采用区划判读与地面验证调查的方法,结合林地变更调查数据源,准确获得样地中的土地利用现状、土地利用变化及生物量信息,进而进行总体估算,得出重庆市2005、2013年土地利用现状及其变化数据,科学测算全市2005-2013年土地利用变化与林业活动所引起的植被碳储量变化情况,以期为林业应对气候变化、参与碳交易等工作提供有力数据支撑。结果表明:1)2005-2013年全市土地类型未发生变化面积7 169.15万hm2,发生变化面积1 070.85万hm2,变化率为13%;其中乔木林地增加38.53万hm2,年增加量4.82万hm2。2)2005、2013年植被碳储量分别是7 887.24、12 051.49万 t,分布特征表现为:乔木林地>竹林地>灌木林地>疏林地>未成林地,其中乔木林地碳主要分布于马尾松、栎类、柏木和杉木等优势树种(组)的林分中。3)2005-2013年全市植被碳储量增加4 164.25万t,增长率为52.80%,其中土地利用变化导致的增加量1 208万t,年增量151万t,表明该区域土地利用变化对植被碳库具有明显的增汇效应。  相似文献   

3.
利用全国森林资源清查资料中的北京市部分,基于生物量转换因子法,通过建立不同森林类型蓄积量与生物量间的回归方程,估算出北京市不同时期森林的生物量和碳储量,并对碳储量的变化进行了分析。结果表明:北京市森林碳储量在5 a内由796万t增加到852万t,呈现增长的趋势,各森林类型碳储量的变化与相应森林类型面积变化呈正相关关系。在全市森林总碳储量中,栎类Quercus spp.,阔叶类,杨树Populus spp.在碳汇中起着重要的作用。树种年龄组成上的不合理很大程度上限制了北京的森林碳汇能力,幼龄林与中龄林面积大但是碳储量较低,成熟林碳储量所占比例较大,不同植被类型以及不同龄组的森林碳密度呈现略微下降的趋势,碳密度随着龄级的增长而增加,其他林分要素在碳汇中发挥着较为重要的作用。表4参20  相似文献   

4.
【目的】研究安徽森林植被碳储量的分布特征,为森林碳汇功能的评价提供依据。【方法】以安徽省第8次(2014年)森林资源清查数据为基础,采用生物量-蓄积量转换模型法和平均生物量法,结合不同树种含碳率,估算安徽森林植被的碳储量和碳密度,并分析了不同森林类型及不同林级、林种和起源的乔木林碳储量分布特征。【结果】安徽不同森林类型的总碳储量为8.51×10~7 t,平均碳密度为20.55 t/hm~2,其中竹林的碳密度最高,为37.33 t/hm~2。乔木林和竹林的碳储量分别为6.42×10~7和1.45×10~7 t,各占总碳储量的75.47%和17.02%;不同龄级乔木林中,中龄林碳储量最大,达2 490.92×10~4 t,约占乔木林总碳储量的40%;过熟林碳储量最小,为256.24×10~4 t,仅占乔木林总碳储量的3.99%,且表现出林龄越大碳密度越高的趋势。用材林和防护林的碳储量分别为3 798.04×10~4和2 205.68×10~4 t,共占乔木林碳储量的93.48%;各林种碳密度大小为特用林防护林用材林经济林薪炭林。天然林的面积(153.86×10~4 hm~2)略低于人工林(154.81×10~4 hm~2),但由于天然林的碳密度高于人工林,使得天然林的碳储量(3 476.50×10~4 t))反而高于人工林(2 946.29×10~4 t)。【结论】安徽省森林植被具有明显的碳汇能力,但其碳密度较低,应对现有森林进行科学抚育和管理,以提高森林的碳汇能力。  相似文献   

5.
以黄河三角洲湿地生态系统为研究对象,通过对区域内不同类型土壤进行取样调查,测算出黄河三角洲湿地6种土壤-植被生态系统的净生态系统生产力(NEP),进而对此生态系统的碳汇进行表征分析。结果表明:黄河三角洲湿地生态系统中海土类型土壤的有机碳储量最高(132.43 t/hm2),最低的是灰砂质冲积土(85.54 t/hm2);植被碳储量范围在1.23~1.73 t/hm2之间,其中最高的是江土,最低的是壤质滨海盐土;土壤碳排量最高的是壤质滨海盐土(5.00 t/hm2),最低的是海土(3.56 t/hm2);黄河三角洲湿地的6种土壤-植被生态系统均为碳汇,净生态系统生产力在82.98~128.88 t/hm2范围内,以海土净生态系统生产力最高,以灰砂质冲积土最低。综上所述,黄河三角洲湿地生态系统主要以碳汇形式存在,但其中植被固碳量较低,为巩固加强生态系统的碳汇能力,应增加植被固碳量。  相似文献   

6.
基于4期森林资源规划设计调查资料,运用生物量转换因子连续函数法,结合GIS空间分析手段,分析了厦门市城市森林主要植被类型碳储量和碳密度在不同城市化区域的时空变化特征。结果表明,1972-2006年,厦门市城市森林碳储量呈现出前期上升,后期小幅下降,总体上升的趋势,34 a间城市森林碳储量增加了865 589.71 t。在城市化梯度上,碳储量大小为中心区<近郊区<远郊区,碳密度大小为中心区>近郊区>远郊区。这主要是由于近郊区和远郊区面积比例较大以及不同区域间植被类型和龄组结构的差异,更深层次的原因是在城市化的快速发展过程中,土地利用变化、植树造林、人为经营管理活动等因素共同影响城市森林碳汇功能。  相似文献   

7.
【目的】为探究林分密度对林下植被物种多样性和生物量的影响及二者之间的相关性。【方法】采用典型样地法对四川省金堂县云顶山5种不同林分密度(500、650、800、950、1 100株/hm2)的柏木(Cupressus funebris)人工林进行植被调查,统计林下物种多样性和生物量。【结果】共记录植物172种,隶属于78科137属。随着林分密度增大,灌木层多样性指数均呈先增后减的单峰变化,基本在密度650株/hm2达到最大,草本层多样性指数则多呈先增后减再增再减的双峰变化,在密度650株/hm2和950株/hm2出现峰值。灌木、草本层生物量均在密度650株/hm2达到最大且均有地上生物量大于地下生物量。灌木层物种重要值与其各层生物量和草本层地上、全株生物量均呈极显著正相关,草本层物种重要值与其地上、全株生物量均呈极显著正相关。【结论】研究认为该地柏木人工林可在650株/hm2的密度下维持较高的林下植被物种多样性和生物量,利于其林下植被的健康发展。  相似文献   

8.
对天然林资源保护工程(天保工程)区不同类型林业碳汇项目开发的可行性进行学理分析与现实阐述,提出天保工程区适合开发的林业碳汇项目类型。依据已颁布的碳汇造林项目方法学、森林经营碳汇方法学,以及国际上已经推行的减少毁林碳汇项目要求,推导构建了不同类型林业碳汇项目开发潜力的估算模型,并以黑龙江森工天保工程区为例,对不同类型林业碳汇项目的开发潜力进行估算。研究表明:天保工程区既可以开发碳汇造林项目和人工林森林经营碳汇项目,还可以开发天然次生林森林经营碳汇项目和减少毁林碳汇项目。不同类型林业碳汇项目的开发潜力不同。以黑龙江森工天保工程区为例,天然次生林森林经营碳汇项目可开发的林地面积为295.25万hm2,开发潜力最大;人工林森林经营碳汇项目可开发的林地面积为86.9万hm2; 2014年以来可开发的减少毁林碳汇项目年均潜力为316.6万m3;碳汇造林项目可开发的林地面积为17.7万hm2,开发潜力最小。基于此,提出将天保工程区人工干扰程度为中高级的天然次生林正式纳入森林经营增汇减排项目允许范畴、尽快出台减少毁林碳汇项目方法学、汲取典型国家建设经验以加快我国林业碳汇交易市场建设的建议。  相似文献   

9.
【目的】揭示温带半干旱区嫩江流域泰湖国家湿地公园天然植物群落的生态系统碳储量沿湖岸至高地环境梯度的空间分布格局及成因,为我国温带半干旱区天然植被长期碳汇实践提供科学依据。【方法】采用相对生长方程、碳/氮分析仪测定法,同步测定沿湖岸至高地环境梯度依次分布的狭叶香蒲沼泽(XYP)、小香蒲沼泽(XP)、芦苇沼泽(L)、草丛沼泽(C)、拂子茅草甸(F)、湿生羊草草地(S)、旱生羊草草地(H)和沙丘榆树疏林(Y)8种植物群落的生态系统(植被和土壤)碳储量、植被净初级生产力与年净固碳量及其相关环境因子(水位、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。【结果】(1)植被碳储量(0.98~27.86 t/hm2)沿湖岸至高地环境梯度呈先降后升的变化趋势(Y>L,XYP,XP>C,F,S,H),草本层碳储量(0.30~8.11 t/hm2)呈阶梯式递减趋势(L,XYP,XP>C,F,S>H,Y)。(2)土壤碳储量(38.49~321.72 t/hm2)沿湖岸至高地环境梯度呈阶梯式递减规律,且存在明...  相似文献   

10.
基于森林清查资料的福建森林植被碳储量及其动态变化   总被引:3,自引:1,他引:2  
定量核算福建省森林碳汇潜力对碳循环研究从区域尺度向全国尺度转换,协调能源需求与碳排放之间的矛盾都具有深远意义。采用森林清查资料着重探讨福建省不同林分类型、林龄结构和土地权属变化对森林植被碳储量的影响。从1978年到2008年,森林面积从8.55×106hm2增加到11.50×106hm2,森林植被碳储量从136.51 Tg增加到229.31 Tg,森林植被碳储量随着林分类型、林龄结构和土地权属的变化而变化。结果表明,可以通过选择林分类型和林龄结构来实现森林植被碳储量的增减,可通过增加成熟林、阔叶林和国有林的比例来进一步提升福建森林的碳汇能力。  相似文献   

11.
基于InVEST模型近10年太湖流域土地利用变化下碳储量功能   总被引:1,自引:0,他引:1  
应用"全国生态环境十年变化(2000—2010年)遥感调查与评估"项目中2000、2010年2期土地覆盖类型数据和生物量数据,并根据《基于1∶100万世界土壤数据库(HWSD)的中国土壤数据集》计算太湖流域地区土壤碳密度、植被(地上、地下)碳密度,并分别计算2000、2010年太湖流域地区碳储量,结合土地利用变化转移情况,分析土地利用变化对碳储量变化的影响。结果表明:太湖流域地区近10年碳储量总体呈下降趋势,碳储量净减少了914.80万t,其中土壤碳储量下降了1 375.66万t,主要是由于林草湿地等土地类型转换为建设用地所致;植被碳储量上升了460.86万t,主要由于林草地近10年生物量上升所致,虽然农田和建设用地向林草地转换使得植被碳储量有所上升,但土地利用转换不是植被碳储量上升的主要驱动因素。  相似文献   

12.
土地利用变化对陆地生态系统碳储量变化影响显著,在制定土地政策时,必须考虑土地利用变化对土壤碳储量的动态影响。以杭州市富阳区为研究对象,探讨了1979—2006年间土地利用变化对碳储量的影响,并预测评价了县区级土地利用规划政策对土壤碳库的影响。结果显示:研究区1979—2006年间土地利用变化导致全区植被碳总量损失为273.4 Gg,表层土壤(0—20 cm)有机碳总量损失为771.0 Gg,建设占用耕地和林地是导致土壤碳储量下降的主要原因。预测2006—2020年间研究区植被碳损失的年均速率将减至25.93 kg·hm-2,土壤有机碳损失的年均速率将减至27.48 kg·hm-2。制定合理政策和有效措施来保护林地,抑制建设用地增长,扭转土壤碳损失趋势势在必行。  相似文献   

13.
【目的】研究陕西省森林碳储量、生产力及固碳释氧经济价值的动态变化,为提高该省森林碳汇的管理和经营提供依据。【方法】利用1994、1999和2004年陕西省森林资源连续清查资料,依据建立的不同森林类型生物量与蓄积量回归方程,估算不同时段森林碳储量和碳密度;并依据不同森林类型生物量与生产力回归关系,推算不同时段森林的生产力和固碳释氧经济价值。【结果】陕西省森林碳储量由1994年的15 140.64万t增加到2004年的16 639.32万t,年增长率为0.99%,特别在1999-2004年,年增长率为1.92%。而平均碳密度在1994、1999和2004年3次调查中依次减小,分别为30.74,29.85和28.73t/hm2。对于不同森林类型,以栎类为主要优势树种的阔叶林对全省森林总碳储量的贡献最大,其碳储量占总碳储量的50%以上。天然林为森林碳储量的主体,占同期碳储量的95%以上,但人工林碳储量以年均9.05%的速度增长,明显大于天然林的增幅(0.79%)。陕西省森林总生产力和固碳释氧经济总价值均不断增加,在1994、1999和2004年的3次调查中,总生产力分别为43.88×106,45.31×106和52.24×106 t/年;固碳释氧经济总价值分别为756.20,780.86和900.25亿元。【结论】陕西省森林表现出了明显的碳汇功能,但碳固定能力还不强,碳密度低于我国平均森林碳密度,未来应加强陕西省各重点造林工程的实施,扩大森林覆盖面积,同时对现有森林应通过科学抚育和管理,挖掘潜力,提高森林碳汇能力,使陕西省的森林生态系统在全球碳循环中发挥更大的作用。  相似文献   

14.
基于2014年湖南省慈利县森林资源二类调查的结果,利用生物量换算因子连续函数法以及不同森林类型的碳含量,求得慈利县森林碳储量,并利用地统计学中普通克里金(Kriging)插值的方法,基于最优的半变异函数绘制湖南省慈利县森林碳密度分布专题图。结果表明,在6种常用的半变异函数中,指数模型作为半变异函数的预测精度较高,决定系数(R2)为0.756,残差平方和(SSR)为0.000 7,很好地反映了研究区森林碳密度的空间结构特征,结果显示慈利县的中北部、西南部和东部的碳密度较高,大于18.84 t·hm-2,其余地方的碳密度较低,小于15.77 t·hm-2。插值结果显示,碳密度在11.19~14.33 t·hm-2的面积最大,达到慈利县总面积的22%;其次为18.84~21.98 t·hm-2,达到全县总面积的16.35%;碳密度在14.33~15.77 t·hm-2以及17.40~18.84 t·hm-2的面积较少,分别占到全县总面积的13.54%和11.58%;碳密度大于28.83 t·hm-2的面积最少,仅占1.76%。可见慈利县主要林分的碳密度还是处于较低水平,林分质量差,不能有效地发挥森林固碳功能,需要开展科学经营改善林分结构与树种组成,实现固碳能力的提升。研究湖南省慈利县森林植被碳储量、碳密度及其地理空间区域分布特征,为慈利县森林碳汇经营、林业碳汇核算和政府科学决策提供科学依据。  相似文献   

15.
以长白山金沟岭林场作为研究区域,研究了主要森林类型碳储量和碳密度的时空变化,为我国森林生态系统碳平衡提供基础资料。结果表明:1)金沟岭林场森林植被碳储量从1997年的7 621.842 2 t 增加到2007年的8 018.125 9 t,净增加了466.283 7 t。碳储量分布以中龄林与近熟林为主,1997年与2007年所占的比例分别为87%与79%,是一个潜在的巨大碳库;2)森林植被的平均碳密度随着龄级结构的增长而增加,1997年与2007年分别为47.541 7 mg·hm-2与50.186 6 mg·hm-2,高于全国2008年森林平均植被碳密度42.82 mg·hm-2,但是低于世界的平均水平86.00 mg·hm-2;3)利用1997年与2007年两期数据分析了该林场森林植被的年固碳增量为39.63 t·hm-2·a-1,平均年增长率0.51%,低于我国森林的平均年增长率1.6%,该林场森林植被仍具有潜在的固碳空间;4)对森林植被的碳汇效益进行了计量, 1997年与2007年分别为2 728.130 8万元与2 744.954 8万元,净增长了16.824 0万元。应加强对现有森林经营,尤其是中幼龄林抚育,提高森林质量,从而增加现存森林的碳密度,以此来提高森林固碳潜力。  相似文献   

16.
【目的】对黄龙山蔡家川林场主要森林类型的碳储量和碳密度进行计算,为该区域森林碳汇功能研究提供参考。【方法】利用1986和1997年黄龙山蔡家川林场森林资源二类调查数据,依据不同森林类型生物量与蓄积量之间的回归方程以及森林生物量与碳储量、碳密度的关系,对该林场主要森林类型(柏木(Cypress)林、杨树(Populus)林、桦木(Betula)林、栎树(Quercus)林、油松(Pinus tabulaeformis)林、杂木林(Nonmerchantable woods))的碳储量、碳密度进行推算和分析,并与全国及西北五省(区)相同森林类型碳密度进行了对比。【结果】1986和1997年,该林场2年平均森林总碳储量为387 740 t,平均森林碳密度为17.7 t/hm2;1997年森林总碳储量比1986年减少9.65%,森林平均碳密度增长3.38%。各森林类型1986和1997年的平均碳密度大小顺序依次为栎树林(28.06t/hm2)、油松林(24.35 t/hm2)、桦木林(21.04 t/hm2)、杂木林(11.86 t/hm2)、柏木林(11.03 t/hm2)和杨树林(10.04t/hm2);1986和1997年不同生长阶段林分平均碳密度大小顺序依次为近熟林(25.56 t/hm2)、幼龄林(25.49 t/hm2)、中龄林(24.77 t/hm2)、成熟林(13.53 t/hm2)、过熟林(12.84 t/hm2)。该林场柏木林、桦木林、栎树林、杨树林、杂木林的森林碳密度均低于全国平均水平,但油松林的平均碳密度较全国平均水平高92.0%。【结论】1986和1997年,该林场森林具有较好的碳汇能力,但这2年间森林碳汇能力变化不显著;森林类型不同或同期林分生长阶段不同,其所具有的碳汇能力存在差异;保护和管理好栎树林、油松林、桦木林,并大力开展幼龄林、中龄林和近熟林的经营抚育工程,对增加该林场森林的碳汇功能具有重要贡献。  相似文献   

17.
为了探究油松人工林的固碳特征及其影响因素,以内蒙古东部区的油松人工林为研究对象,利用空间代替时间的方法,对研究区内不同林龄的油松人工林各器官和土壤的碳含量进行测定,分析其植被和土壤的固碳特征。结果表明:随着林龄的增加,乔木层和土壤层碳储量均逐渐增加,各器官平均碳含量为502.49 mg/g,乔木层平均碳储量为39.59 t/hm2,土壤层平均碳储量为60.30 t/hm2,土壤层平均碳储量为60.30 t/hm2,植被和土壤的总平均碳储量为99.88 t/hm2,植被和土壤的总平均碳储量为99.88 t/hm2,相同林龄碳储量均表现为土壤层高于乔木层。气候特征、林分结构、土壤深度等是影响油松人工林碳储量大小的主要因素,边缘分布区与中心分布区的碳储量存在差异,这主要与气候梯度变化和人工林的经营管理措施相关。  相似文献   

18.
岳麓山枫香风景林碳汇效应研究   总被引:1,自引:0,他引:1  
岳麓山枫香林既是长沙市城市森林主要的组成部分,又是我国四大观赏红叶的风景林之一。开展岳麓山枫香风景林碳汇效应研究对系统评价和科学管理长沙城区重要风景林资源意义重大。采用样地实测结合相对生长模型的方法对岳麓山枫香风景林碳汇效应进行研究,建立枫香风景林各器官生物量的最优模型,估算根、干、枝、叶的碳储量及总碳储量和碳密度。结果表明,枫香林分林木径阶在6.1~46 cm时,各器官碳储量大小依次为树干>树根>树枝>树叶;林木径阶>46 cm时,各器官碳储量大小依次为树干>树枝>树根>树叶。岳麓山枫香风景林最优碳汇量生长拟合方程为C=0.124D2.258R2=0.985)。平均碳汇速率随胸径增大而增大。岳麓山枫香风景林的碳汇效应较大,样地平均碳储量为8.70 t,平均碳密度为96.69 t/hm2,对改善城区人居环境作用明显。  相似文献   

19.
江苏省森林植被碳储量分布结构及变化特征   总被引:2,自引:0,他引:2  
2010年以来,江苏省森林资源呈现出面积下降但蓄积增长的分化走势,森林类型和区域分布发生结构性变化,对全省森林植被碳储量产生较大影响。基于全国第8次(2010年)、第9次(2015年)2期森林资源清查资料,利用生物量转换因子连续函数法对5 a间全省森林植被碳储量、碳密度、地理空间分布格局及动态变化的特征和原因进行了研究。结果表明:1)2015年江苏省森林/林木碳储量分别为3 638.10×104t、4 594.59×104t,相比2010年增长8.94%、11.53%,森林碳密度23.15 t/hm2,增加14.22%。2)2015年全省乔木林碳储量3 321.73×104t,同比增长9.97%,树种(组)碳储量比重标准差下降4.38,其中杨树比重降低17.45 %,树种碳储量更平衡;碳储量林龄分布由2010年时集中于中龄林(53.86%)大幅调整为23∶33∶44(幼∶中∶近成过),结构更为合理。3)2015年全省森林碳储量在地理板块间分布比重为苏北57.26%、苏南32.61%、苏中10.13%,前两者分别降低10.5%、增长10.65%,区域分布结构趋于均衡,不同类型在市域间表现较大差异性。经分析,全省各森林类型间、树种间、林龄间、区域间的碳储量、碳密度结构趋向合理,增长的可持续性得到强化,在不同地区间造林绿化、采伐消耗、森林抚育等针对性措施驱动下,全省碳库潜力巨大,未来增长空间与速度可观。同时,在四旁树和散生木碳储量估算方法、不同树种(组)宜地生物量转换因子甄选、江淮地区灌木经济林和竹林单位面积碳储量因子选取等方面做了讨论,以期为更高精度下基于清查数据估算华东平原省份森林植被碳储量提供借鉴。  相似文献   

20.
【目的】针对采伐干扰后天然恢复的次生林,建立其碳储量生长模型及对应的碳汇模型,分析不同因子对固碳能力的驱动作用,为固碳能力量化评价提供科学依据。【方法】基于吉林省第9次森林资源连续清查固定样地数据筛选出的111个采伐后形成的天然次生林样地数据,采用Richards理论生长方程,以样地平均木的碳储量为因变量,以样地平均年龄为自变量,通过对年龄分组和迭代算法建立碳储量分级生长模型,通过对碳储量分级生长模型中的年龄求导得到碳汇分级生长模型。采用决定系数(R2)和均方根误差(RMSE)评价模型拟合效果。以地理因子、地形因子、气候因子、土壤因子和林分因子为自变量,基于一般线性模型,引入定性和定量因子交互作用,分析固碳能力的驱动力。【结果】(1)天然次生林碳储量分级生长模型的R2为0.965 6,RMSE为2.61 kg,具有很好的拟合优度。(2)各个分级碳汇量最大的年龄分别为8、10、13、17和29年,以1 000株/hm2的密度计算,5年时间的阈值为1.84 t/hm2,到30年时增加到10.78 t/h...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号