首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
在哺乳动物体内,线粒体铁蛋白(mitochondrial ferritin,MtFt)是一个无内含子的基因编码的蛋白,与胞质中的H-ferritin具有较高的同源性,也具有亚铁氧化酶的活性,特异性地在线粒体中表达。近年来的研究发现,过表达MtFt可以使线粒体免受由铁引起的氧化损伤。本文主要介绍MtFt在结构功能上的特点,及其在与铁相关的一些神经退行性疾病中的保护作用。  相似文献   

2.
铁元素是生物体中必不可少的微量元素,在生物的生长发育中发挥着重要作用。铁蛋白是一种分布广泛的球形蛋白,能够以稳定的形式储存大量铁。铁蛋白通过储存和释放铁来维持机体内铁平衡。铁蛋白不仅是机体中重要的铁储存蛋白,同时也能有效保护生物体免受来自氧自由基的损伤。与此同时,铁蛋白含量可以作为一些疾病预防检测的明确指标。对铁的代谢吸收及铁对基因调控的研究,进一步说明了维持铁平衡对生物体有重要意义。  相似文献   

3.
单核巨噬细胞铁代谢相关蛋白的表达调控   总被引:2,自引:0,他引:2  
人类机体的铁代谢表现为受限制的对外界铁的吸收和有效的机体内的铁的再循环利用,单核巨噬细胞系统通过吞噬衰老的红细胞,储存和释放铁,在机体铁的循环再利用方面起到了重要的作用。因此,单核巨噬细胞系统对整个机体铁稳态的维持非常重要。近年来,随着转铁蛋白受体1(transferrin receptor1,TfR1)、铁蛋白(ferritin,Fn)、二价金属离子转运蛋白1(divalent metal transporter1,DMT1)、膜铁转运蛋白1(ferroportin1,FPN1),以及铁调素(hepcidin)等在单核巨噬细胞系统中功能和调控机制研究的不断深入,日益加深了人们对单核巨噬细胞系统的铁代谢过程和调控机制的了解。该文综述了铁水平、NO以及炎症等因素对单核巨噬细胞系统TfR1、Fn、DMT1、FPN1、hepcidin等蛋白表达的调控及其机制研究的最新进展。  相似文献   

4.
铁蛋白(Ferritin)是一种广泛存在于生物体中的笼状蛋白,由24个亚基自组装形成的蛋白质外壳和铁内核两部分组成,是维持机体铁代谢平衡的重要蛋白。最新发现,人血清铁蛋白含量的变化与某些疾病相关,特别是发现利用大肠杆菌重组表达、仿生合成的磁性人铁蛋白具有双功能特性,即识别肿瘤并使其可视化。此外,铁蛋白独特的结构及理化性质使其成为理想的纳米载体,用于构筑多功能肿瘤成像和药物输送的平台。本文重点介绍人铁蛋白的新功能及其在疾病诊断和肿瘤靶向治疗中的应用前景。  相似文献   

5.
铁代谢与铁调素hepcidin   总被引:10,自引:0,他引:10  
Fu LJ  Duan XL  Qian ZM 《生理科学进展》2005,36(3):233-236
铁是机体必需的营养元素。然而,铁过载则导致细胞的损伤。由于生物体缺少排泄铁的机制,因而,肠铁吸收的调控便成为维持机体铁稳态的关键。新近研究发现hepcidin对机体铁稳态的调节起着至关重要的作用,被人们称为铁调节激素。Hepcidin主要在肝细胞中合成,之后分泌至血液将体内铁需要的信号传至小肠,调控肠铁的吸收。这一过程主要通过调节小肠铁转运相关蛋白的表达而实现。任何影响hepcidin表达的因素都可能破坏体内的铁平衡,造成铁代谢相关疾病。  相似文献   

6.
超顺磁性铁纳米粒子(SPION)已在纳米医学等诸多领域开始应用,其相关研究也受到了广泛关注,但有关磁性纳米粒子进入细胞的方式、代谢归宿及细胞学效应仍不完全清楚.本研究发现,几乎所有的内吞信号通路都参与了SPION进入RAW264.7巨噬细胞的过程.SPION入胞后主要有3种代谢途径:(1)随有丝分裂进入子代细胞;(2)经溶酶体降解释放游离铁离子进入细胞的铁代谢库;(3)可能通过胞吐作用被排至细胞外.SPION入胞后有很好的生物相容性,对细胞活力、活性氧(ROS)生成及线粒体膜电位等无显著影响,但SPION入胞后对胞内的铁代谢有一定影响,能使贮铁蛋白L(ferritin-L)的mRNA和蛋白表达均升高,运铁蛋白1(ferroportin1)在mRNA水平表达升高,但蛋白质水平未见明显变化,且上述两种蛋白质表达的变化不是通过影响铁调节蛋白2(IRP2)实现的.上述发现为深入揭示纳米粒子的入胞机制及磁性纳米粒子在医学上的安全应用提供了实验依据.  相似文献   

7.
线粒体是真核生物进行能量代谢的主要场所,在自由基产生、细胞凋亡、衰老等生理病理活动中也起到重要作用。线粒体功能受核基因和线粒体基因共同调控,microRNA(miRNA)介导的基因转录后调控是重要机制之一。核基因编码的miRNA不仅可以通过调控核基因编码的线粒体相关蛋白的表达影响线粒体结构和功能,而且可以进入线粒体并调控线粒体基因的表达。另一方面,线粒体基因也可能编码miRNA,直接调控线粒体基因表达或转运至胞质调控核基因的表达。  相似文献   

8.
线粒体铁代谢与人类疾病的研究进展   总被引:1,自引:0,他引:1  
线粒体铁代谢的研究主要包括两个方面:铁在胞质和线粒体之间的转运和调控;铁硫簇和血红素在线粒体内的合成与转运。目前认为线粒体铁的转入主要是与mitoferrinl/2(MFRNl和MFRN2)和ABCBl0有关,运出可能与ABCB6和/或ABCB7有关,转运和调控的具体机制不是很清楚,推测与某种含有铁硫簇的信号分子有关。哺乳动物铁硫簇的合成可以发生在胞质和线粒体内,但以线粒体为主;真核生物中与铁硫簇合成相关的蛋白达二十多种,其中FXN、ISCS、ISDll和ISCU及其同系物被认为是核心组分。血红素的合成起始和终止发生在线粒体内,终止步骤为亚铁螯合酶将铁插入原卟啉IX,该酶活性又依赖于铁硫簇。因此,铁硫簇的合成与调控是线粒体铁代谢的核心,也是整个细胞铁运作的核心。本文主要围绕线粒体铁代谢特别是铁硫簇的合成异常引起的疾病做一简单的综述。  相似文献   

9.
膜铁转运蛋白1,铁调素的靶分子?   总被引:2,自引:0,他引:2  
膜铁转运蛋白1是重要的跨膜铁输出分子,主要分布于十二指肠和单核巨噬系统的细胞膜上,参与机体的肠铁吸收和巨噬细胞对铁的再循环等过程。铁调素是调节机体铁代谢平衡的激素,机体通过肝脏分泌的铁调素对铁转运相关蛋白的表达进行调控,从而实现机体自身的铁稳态。最新研究显示,铁调素的靶分子可能是膜铁转运蛋白1,它通过直接的作用引起膜铁转运蛋白1的内化(internalization)、降解,从而调节其在细胞膜上的表达量,进而控制肠铁吸收和巨噬细胞对铁的再循环过程,以维持机体的铁稳态。  相似文献   

10.
线粒体融合蛋白2(mitofusin 2,Mfn2)位于线粒体外膜上,是线粒体外膜融合的重要蛋白之一。研究发现,它不仅参与调控线粒体形态结构,还与细胞代谢、增殖、凋亡密切相关。近年来资料提示,Mfn2参与调控内质网应激、自噬、线粒体自噬等方面。由于Mfn2作用复杂,生理状态下细胞内必定存在精细的调控网络以使其保持在稳定水平。本文概括介绍了Mfn2结构、功能及其调控机制新进展。  相似文献   

11.
Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.  相似文献   

12.
铁蛋白作为一种重要的铁储存蛋白,在不同的微生物体中普遍存在.通过对典型的微生物铁蛋白分子(FTN)的结构及其功能的归纳分析发现,铁蛋白依赖其独特的结构特点,在铁的补充、转运、氧化、成核和储存中扮演着重要作用,也对生物体内的多种生物化学反应影响显著.同时借助基因工程技术对铁蛋白进行相应的分子改造,增加了其作为纳米载体的应...  相似文献   

13.
14.
铁蛋白是生物体广泛存在且高度保守的可溶性蛋白质,在铁离子稳态维持、胚胎发育调控、细胞增殖以及细胞凋亡等过程中具有重要作用。过量的铁离子能通过芬顿反应产生活性氧,过量的活性氧会造成氧化应激并直接损害DNA、脂质和蛋白质,最终导致细胞凋亡。铁蛋白能够螯合铁离子,进而保护细胞免受氧化应激诱导的细胞凋亡。铁蛋白表达受阻时,细胞内不稳定铁水平升高并诱导氧化应激,最终造成细胞凋亡。同时,氧化应激可在转录和翻译水平调节铁蛋白表达,升高的铁蛋白则参与维持机体氧化还原水平的稳定。本文主要从线粒体途径和死亡受体途径阐明铁蛋白介导细胞凋亡的分子机制,为深入研究铁蛋白功能以及相关疾病治疗提供理论支持。  相似文献   

15.
细菌铁蛋白氧化还原特性及电极活性的研究   总被引:3,自引:3,他引:0  
棕色固氮菌细菌铁蛋白能直接快速地从金属铂电极上得到电子或提供电子给铂电极。经-600mV(相对于NHE)还原电位处理后,还原态细菌铁蛋白在可见光谱区中(380-580nm)所呈现的整体吸收光谱强度明显高于氧化态细菌铁蛋白的吸收光谱强度。经氯化钴处理后的细菌铁蛋白表现出较弱的电极活性及释放铁的速率明显下降。此外,细菌铁蛋白在体外模拟棕色固氮菌整体细胞内的微量氧环境体系中仍有氢还原现象,因而推测细菌铁蛋白在该菌体内也能进行吸氢反应。细菌铁蛋白是一种类似有吸氢氢酶功能的蛋白质  相似文献   

16.
The release mechanism for ferritin iron and the nature of the compound(s) which donate iron to the mitochondria are two important problems of intracellular iron metabolism which still await their solution. We have previously shown that isolated mitochondria reduce exogenously added flavins in a ubiquinol-flavin oxidoreductase reaction at the C-side of the inner membrane and that the resulting dihydroflavins function as reductants in mitochondrial mobilization of iron from ferritin (Ulvik, R. J., and Romslo, I. (1981). Biochim. Biophys. Acta 635, 457-469). In the present study it is shown that the rate at which iron is removed from ferritin depends on the capability of the flavins to penetrate (1) the mitochondrial outer membrane and (2) the intersubunit channels of the ferritin protein shell. Intact mitochondria reduce flavins at rates which decrease in the following order: riboflavin > FAD > FMN. The ferritin iron mobilization rates decrease in the order of riboflavin > FMN > FAD. The results are further support for the operation of a flavin-dependent mitochondrial ferrireductase, and strengthen the suggested role for ferritin as a donor of iron to the mitochondria.  相似文献   

17.
18.
Iron is one of the trace elements playing a key role in the normal cellular metabolism. Since an excess of free iron is catalyzing the Fenton reaction, most of the intracellular iron is sequestered in the iron storage protein ferritin. The binding of iron into ferritin is well described for physiological conditions, however, under certain pathophysiological situations, the efficiency of this process is unknown. In the brain, microglial cells are among others the cell population most importantly responsible for the maintenance of the extracellular environment. These cells might undergo activation, and little is known about the expression of ferritin during activation of microglial cells. Therefore, we tested the microglial model cell line RAW264.7 for the expression of ferritin after LPS activation. A significant decrease in the levels of the ferritin H-chain during activation and a significant increase in the early recovery phase were found. We were able to demonstrate that reactive oxygen species are responsible for a suppression of the H-chain of ferritin, whereas iNOS expression and NO synthesis are counteracting the reactive oxygen species effect. The balance of reactive oxygen species and NO production are, therefore, determining expression levels of the ferritin H-chain during activation of microglial cells.  相似文献   

19.
 The biological relevance of each of the three inorganic species – iron, oxygen, and nitric oxide (NO) – is crucial. Moreover, their metabolic pathways cross each other and thus create a complex network of connections responsible for the regulation of many essential biological processes. The iron storage protein ferritin, one of the main regulators of iron homeostasis, influences oxygen and NO metabolism. Here, examples are given of the biological interactions of the ferritin molecule (ferritin iron and ferritin shell) with reactive oxygen species (ROS) and NO. The focus is the regulation of ferritin expression by ROS and NO. From these data, ferritin emerges as an important cytoprotective component of the cellular response to ROS and NO. Also, by its ability to alter the amount of intracellular "free" iron, ferritin may affect the metabolism of ROS and NO. It is proposed that this putative activity of ferritin may constitute a missing link in the regulatory loop between iron, ROS, and NO. Received: 2 January 1997 / Accepted: 9 June 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号