首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Recent studies have suggested that humans cannot estimate their direction of forward translation (heading) from the resulting retinal motion (flow field) alone when rotation rates are higher than approximately 1 deg/sec. It has been argued that either oculomotor or static depth cues are necessary to disambiguate the rotational and translational components of the flow field and, thus, to support accurate heading estimation. We have re-examined this issue using visually simulated motion along a curved path towards a layout of random points as the stimulus. Our data show that, in this curvilinear motion paradigm, five of six observers could estimate their heading relatively accurately and precisely (error and uncertainty < approximately 4 deg), even for rotation rates as high as 16 deg/sec, without the benefit of either oculomotor or static depth cues signaling rotation rate. Such performance is inconsistent with models of human self-motion estimation that require rotation information from sources other than the flow field to cancel the rotational flow.  相似文献   

2.
The ability of younger and older observers to perceive 3-D shape and depth from motion parallax was investigated. In Experiment 1, the observers discriminated among differently curved 3-dimensional (3-D) surfaces in the presence of noise. In Experiment 2, the surfaces' shape was held constant and the amount of front-to-back depth was varied; the observers estimated the amount of depth they perceived. The effects of age were strongly task dependent. The younger observers' performance in Experiment 1 was almost 60% higher than that of the older observers. In contrast, no age effect was obtained in Experiment 2. Older observers can effectively perceive variations in depth from patterns of motion parallax, but their ability to discriminate 3-D shape is significantly compromised. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Motion detection can be achieved either with mechanisms sensitive to a target's velocity, or sensitive to change in a target's position. Using a procedure to dissociate these two provided by Nakayama and Tyler (Vis Res 1981;21:427-433), we explored detection of first-order (luminance-based) and various second-order (texture-based and stereo-based) motion. In the first experiment, observers viewed annular gratings oscillating in rotational motion at various rates. For each oscillation temporal frequency, we determined the minimum displacement of the pattern for which observers could reliably see motion. For first-order motion, these motion detection thresholds decreased with increasing temporal frequency, and thus were determined by a minimum velocity. In contrast, motion detection thresholds for second-order motion remained roughly constant across temporal frequency, and thus were determined by a minimum displacement. In Experiment 2, luminance-based gratings of different contrasts were tested to show that the velocity-dependence was not an artifact of pattern visibility. In the remaining experiments, results similar to Experiment 1 were obtained with a central presentation of a linear grating, instead of an annular grating (Experiment 3), and with a motion discrimination (phase discrimination) rather than motion detection task (Experiment 4). We conclude that, within the ranges tested here, second-order motion is more readily detected with a mechanism which tracks the change of position of features over time.  相似文献   

4.
The transparency phenomenon, which arises when a radial and a rotational motion pattern are spatially superimposed, suggests that these motion patterns are processed independently. Indeed, for unrestricted stimulus durations, observers could identify the rotational pattern as clockwise or counterclockwise, and the radial pattern as expansion or contraction, even under uncertainty. However, when the time available to process the compound stimulus was equal to the minimum duration required to identify each of the patterns when presented in isolation, identification was impaired. Whereas for spirallike motion patterns the radial and rotational components could be identified, radial and rotational motion patterns were not processed independently when superimposed. Although radial and rotational transformations could not be identified simultaneously, a coherent optic flow pattern could be segregated from another superimposed flow component given definite foreknowledge. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
In principle, information for 3-D motion perception is provided by the differences in position and motion between left- and right-eye images of the world. It is known that observers can precisely judge between different 3-D motion trajectories, but the accuracy of binocular 3-D motion perception has not been studied. The authors measured the accuracy of 3-D motion perception. In 4 different tasks, observers were inaccurate, overestimating trajectory angle, despite consistently choosing similar angles (high precision). Errors did not vary consistently with target distance, as would be expected had inaccuracy been due to misestimates of viewing distance. Observers appeared to rely strongly on the lateral position of the target, almost to the exclusion of the use of depth information. For the present tasks, these data suggest that neither an accurate estimate of 3-D motion direction nor one of passing distance can be obtained using only binocular cues to motion in depth. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The authors examined age-related differences in the detection of collision events. Older and younger observers were presented with displays simulating approaching objects that would either collide or pass by the observer. In 4 experiments, the authors found that older observers, as compared with younger observers, had less sensitivity in detecting collisions with an increase in speed, at shorter display durations, and with longer time-to-contact conditions. Older observers also had greater difficulty when the scenario simulated observer motion, suggesting that older observers have difficulty discriminating object motion expansion from background expansion from observer motion. The results of these studies support the expansion sensitivity hypothesis-that age-related decrements in detecting collision events involving moving objects are the result of a decreased sensitivity to recover expansion information. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
In classic demonstrations of apparent motion, observers typically report seeing motion along the shortest possible path between 2 sequentially presented objects. However, when realistic photographs of a human body are sequentially presented at slow temporal rates, observers report paths of apparent motion that arc consistent with the movement limitations of the human body even when those paths are not the shortest possible. The current set of experiments examined those aspects of the human form that lead to the perception of biomechanically consistent paths of motion. The authors' findings suggest that the perception of apparent biological motion extends to human movements that involve inanimate objects. The authors also report that observers can perceive apparent motion of nonbiological objects in a manner similar to apparent motion of human bodies. However, a global hierarchy of orientation and position cues resembling the human form is required for the perception of these paths. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
When presented with random-dot displays with little depth information, observers cannot determine their direction of self-motion accurately in the presence of rotational flow without appropriate extra-retinal information (Royden CS et al. Vis Res 1994;34:3197-214.). On theoretical grounds, one might expect improved performance when depth information is added to the display (van den Berg AV and Brenner E. Nature 1994;371:700-2). We examined this possibility by having observers indicate perceived self-motion paths when the amount of depth information was varied. When stereoscopic cues and a variety of monocular depth cues were added, observers still misperceived the depicted self-motion when the rotational flow in the display was not accompanied by an appropriate extra-retinal, eye-velocity signal. Specifically, they perceived curved self-motion paths with the curvature in the direction of the simulated eye rotation. The distance to the response marker was crucial to the objective measurement of this misperception. When the marker distance was small, the observers' settings were reasonably accurate despite the misperception of the depicted self-motion. When the marker distance was large, the settings exhibited the errors reported previously by Royden CS et al. Vis Res 1994;34-3197-3214. The path judgement errors observers make during simulated gaze rotations appear to be the result of misattributing path-independent rotation to self-motion along a circular path with path-dependent rotation. An analysis of the information an observer could use to avoid such errors reveals that the addition of depth information is of little use.  相似文献   

9.
The 2D projection of a rotating Necker cube yields an ambiguous 3D interpretation based on both 2D shape and kinetic depth information. The present study shows that the alternation rate of the two 3D interpretations is constant with the rotation speed up to some critical value (around 25 turns/min for a cube whose sides subtend 2.5 deg) and increases monotonically thereafter. It is proposed that the additional perceptual reversals (PRs) observed at high rotation speeds are due to the increased frequency of the crossovers of the cube's edges. These crossovers yield 2D motion "aliasing" (or discontinuity) and "veridical" (or continuity) motion components. The motion aliasing (or crossover) hypothesis states that, in addition to the inherent ambiguity of the dynamic 2D projection of 3D objects, perceptual motion/perspective reversals will occur any time the discontinuity speed takes over the continuity speed. It is proposed that the relative strengths of the two components depend on the linear speed of the projected edges and that the discontinuity components take over the continuity one in the speed range where contrast sensitivity (or, above threshold, efficiency) is a decreasing function of speed. The motion aliasing hypothesis was tested and supported in a series of independent experiments showing that, for rotation speeds higher than 25 turns/min the PR rate increases with the crossover frequency at a constant speed, with linear speed at a constant crossover frequency and with the similarity of the crossing bars in terms of their orientation, polarity and spatial overlap. In addition, some of these experiments suggest that 2D shape and kinetic depth 3D-cues combine in such a way that the average PR rate they yield together is the same as the PR rate yielded by each of them independently. In the Discussion section we elaborate on issues related to the perceptual combination of ambiguous shape and kinetic depth, 3D cues.  相似文献   

10.
This study examined whether the perception of heading is determined by spatially pooling velocity information. Observers were presented displays simulating observer motion through a volume of 3-D objects. To test the importance of spatial pooling, the authors systematically varied the nonrigidity of the flow field using two types of object motion: adding a unique rotation or translation to each object. Calculations of the signal-to-noise (observer velocity-to-object motion) ratio indicated no decrements in performance when the ratio was .39 for object rotation and .45 for object translation. Performance also increased with the number of objects in the scene. These results suggest that heading is determined by mechanisms that use spatial pooling over large regions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
In three experiments, observers who were instructed to perceive one of two alternative depth arrangements of a three-dimensional wire cube fixated near one of two intersections that differed in the degree to which they specified the cube's veridical depth organization. In order to separate perceptual effects from experimenter effects, we measured indirect reports about variables perceptually coupled to perceived depth rather than direct reports about perceived depth. In all three experiments, reversal durations at the two intersections differed, even though the two were parts of a single object. In addition, reversals varied with viewers' intentions. Thus, the unit of perceptual organization may be smaller than the entire object, and viewers' intentions can influence the perception of real moving objects. In additional analyses, reversal durations were separated into two components: nonelective instability and malleability; the question of whether these two components of ambiguity are functionally distinct could not be decided. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
In two experiments we investigated people's ability to judge the relative mass of two objects involved in a collision. It was found that judgments of relative mass were made on the basis of two heuristics. Roughly stated, these heuristics were (a) an object that ricochets backward upon impact is less massive than the object that it hit, and (b) faster moving objects are less massive. A heuristic model of judgment is proposed that postulates that different sources of information in an event may have different levels of salience for observers and that heuristic access is controlled by the rank ordering of salience. It was found that observers ranked dissimilarity in mass on the basis of the relative salience of angle and velocity information and not proportionally to the distal mass ratio. This heuristic model was contrasted with the notion that people can veridically extract dynamic properties of motion events when the kinematic data are sufficient for their specification. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
The accuracy of depth judgments that are based on binocular disparity or structure from motion (motion parallax and object rotation) was studied in 3 experiments. In Experiment 1, depth judgments were recorded for computer simulations of cones specified by binocular disparity, motion parallax, or stereokinesis. In Experiment 2, judgments were recorded for real cones in a structured environment, with depth information from binocular disparity, motion parallax, or object rotation about the y-axis. In both of these experiments, judgments from binocular disparity information were quite accurate, but judgments on the basis of geometrically equivalent or more robust motion information reflected poor recovery of quantitative depth information. A 3rd experiment demonstrated stereoscopic depth constancy for distances of 1 to 3 m using real objects in a well-illuminated, structured viewing environment in which monocular depth cues (e.g., shading) were minimized. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The ability to judge heading during tracking eye movements has recently been examined by several investigators. To assess the use of retinal-image and extra-retinal information in this task, the previous work has compared heading judgments with executed as opposed to simulated eye movements. For eye movement velocities greater than 1 deg/sec, observers seem to require the eye-velocity information provided by extra-retinal signals that accompany tracking eye movements. When those signals are not provided, such as with simulated eye movements, observers perceive their self-motion as curvilinear translation rather than the linear translation plus eye rotation being presented. The interpretation of the previous results is complicated, however, by the fact that the simulated eye movement condition may have created a conflict between two possible estimates of the heading: one based on extra-retinal solutions and the other based on retina-image solutions. In four experiments, we minimized this potential conflict by having observers judge heading in the presence of rotations consisting of mixtures of executed and simulated eye movements. The results showed that the heading is estimated more accurately when rotational flow is created by executed eye movements alone. In addition, the magnitude of errors in heading estimates is essentially proportional to the amount of rotational flow created by a simulated eye rotation (independent of the total magnitude of the rotational flow). The fact that error magnitude is proportional to the amount of simulated rotation suggests that the visual system attributes rotational flow unaccompanied by an eye movement to a displacement of the direction of translation in the direction of the simulated eye rotation.  相似文献   

15.
Sixteen-week-old human infants distinguish optical displacements given by their own motion from displacements given by moving objects, and they use only the latter to perceive the unity of partly occluded objects. Optical changes produced by moving the observer around a stationary object produced attentional levels characteristic of stationary observers viewing stationary displays and much lower than those shown by stationary observers viewing moving displays. Real displacements of an object with no subject-relative displacement, produced by moving an object so as to maintain a constant relation to the moving observer, evoked attentional levels that were higher than with stationary displays and more characteristic of attention to moving displays, a finding suggesting detection of the real motion. Previously reported abilities of infants to perceive the unity of partly occluded objects from motion information were found to depend on real object motion rather than on optical displacements in general. The results suggest that object perception depends on registration of the motions of surfaces in the three-dimensional layout. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Existing computational analyses of the perception of structure from motion assume that moving elements on the retina projectively correspond to identifiable moving points in 3-dimensional space. Two experiments, in which the author and 2 graduate students served as Ss, and 4 demonstrations, with an unspecified number of observers, examined the psychological validity of this assumption in several different contexts. Results indicate that the ability of Ss to perceive structure from motion was much more general than would be reasonable to expect on the basis of existing theory. Ss could experience a compelling kinetic depth effect even when the pattern of optical motion was contaminated by large amounts of visual noise (e.g., where the signal to noise ratio was less than 0.15). Moreover, the optical deformations of shading, texture, or self-occluding contours, which would be treated as noise by existing computational models, were analyzed by the Ss as perceptually salient sources of information about an object's 3-dimensional form. Results suggest that the modular analyses of visual information that currently dominate the literature will have to be modified if they are to account for the high level of generality exhibited by human observers. (49 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Although recent fMRI and single unit recording studies have shown that attention modulates neural activity in motion sensitive areas of extrastriate cortex, these approaches cannot reveal qualitative or quantitative effects of attention on perception of motion. To investigate this, we asked observers to select one of two orthogonal directions in a brief, transparent dot display (prime) and then measured their sensitivity to global directional motion in a second uni-directional dot display (probe) presented a short time later. When probe direction matched the attended prime direction, sensitivity was degraded. But, when probe direction matched the ignored prime direction, sensitivity was enhanced, even though both components were of equal physical strength. Sensitivity was unchanged for directions opposite to either previously seen direction. Neither sensory adaptation nor opponent direction mechanisms can account for these data. Rather, processes initiated by visual selection must underlie these dramatic changes in motion sensitivity.  相似文献   

18.
Most studies and theories of object recognition have addressed the perception of rigid objects. Yet, physical objects may also move in a nonrigid manner. A series of priming studies examined the conditions under which observers can recognize novel views of objects moving nonrigidly. Observers were primed with 2 views of a rotating object that were linked by apparent motion or presented statically. The apparent malleability of the rotating prime object varied such that the object appeared to be either malleable or rigid. Novel deformed views of malleable objects were primed when falling within the object's motion path. Priming patterns were significantly more restricted for deformed views of rigid objects. These results suggest that moving malleable objects may be represented as continuous events, whereas rigid objects may not. That is, object representations may be "dynamically remapped" during the analysis.of the object's motion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Three experiments examined pigeon discrimination of computer-generated three-dimensional (3-D) projections of cube and pyramid objects. Four pigeons were tested using a go/no-go procedure involving static and dynamically rotating presentations of these stimuli. Transfer tests with different types of rotational and featural transformations suggested the pigeons may have used a 3-D representation of the objects as their primary means of performing the discrimination. The comparative implications for object and motion perception in animals are considered. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Real-world situations involve attending to spatially extended objects, often under conditions of motion and high processing load. The present experiments investigated such processing by requiring observers to attentionally track a number of long, moving lines. Concurrently, observers responded to sporadic probes as a measure of the distribution of attention across the lines. The results revealed that attention is concentrated at the centers of lines during tracking, despite their uniformity, and that this center advantage grew as the lines became longer: Not only did observers get worse near the endpoints, but they became better at the lines' centers, as if attention became more concentrated as the objects became more extended. These results begin to show how attention is flexibly allocated in online visual processing to extended dynamic objects. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号