首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
【背景】泡梨是云南省常见的一种腌渍水果,在云南加工食用已经有一百多年的历史,因其味道酸甜可口、风味独特而深受人们喜爱,而目前对泡梨中微生物种群的系统分析和发酵原理的研究尚未见报道。【目的】研究乳酸菌在云南泡梨中的分布及应用,阐明乳酸菌种类对泡梨发酵中风味物质的影响。【方法】从云南省4个不同地区采集12份泡梨样品,经菌落菌体形态、生理生化特性和16SrRNA基因序列分析进行菌种分离与鉴定。利用分离的乳酸菌为菌种进行泡梨的制备,采用GC-MS技术对人工接种的复合乳酸菌发酵与自然发酵泡梨进行风味物质的分析与感官评价。【结果】分离鉴定出79株植物乳杆菌(Lactobacillus plantarum)、 3株类植物乳杆菌(Lactobacillus paraplantarum)、1株戊糖乳杆菌(Lactobacillus pentosus)、1株干酪乳杆菌(Lactobacillus casei)、2株副干酪乳杆菌(Lactobacillus paracasei)和1株短乳杆菌(Lactobacillus brevis),植物乳杆菌为泡梨发酵中的优势菌。将分离所得乳酸菌用于泡梨制备的结果表明,乳酸菌使泡梨的发酵时间缩短5d且品质更优,分析其中的风味物质发现接种乳酸菌发酵泡梨风味物质更丰富,其中酯类和醇类远多于自然发酵泡梨。【结论】云南泡梨中含有丰富的乳酸菌,选用分离出的优势乳酸菌作为复合乳酸菌用于泡梨发酵获得色泽、口感更好的泡梨,且发酵周期更短,风味物质更丰富。该研究对泡梨制备工艺和进一步标准化生产均具有重要意义。  相似文献   

2.
以紫斑牡丹(Paeonia suffruticosa var. papaveracea)花瓣为原料,采用隔离窨制,对牡丹花茶窨制过程中花坯、配花量等主要影响因子进行研究。结果表明,密闭箱桶温度21 ℃、相对湿度90%、窨制时间48 h条件下经一窨一提获得的花茶,感官评审花与茶叶的协调度高、香气高锐持久、茶汤滋味醇正鲜爽。采用气相色谱-质谱联用仪分析花茶香气成分,新鲜花瓣与茶叶配比5:1窨制48 h的花茶苯乙醇、香叶醇、橙花醇含量较高,其香气高扬、茶汤醇正鲜爽,配比2.5:1的花茶上述成分含量和感官其次,而拌和型茶品透素欠鲜爽。发酵或发酵揉捻花瓣窨制的花茶乙醇、环氧芳樟醇及高级烷烃含量较高,其主要赋香物质低于新鲜花瓣含量,渥味明显,茶汤有浊气欠鲜爽。  相似文献   

3.
紫色芽叶红茶适制性研究   总被引:5,自引:0,他引:5  
以安化群体种紫色芽叶为原料加工红茶,通过感官审评结合品质成分分析,对紫色芽叶的红茶适制性进行了研究.结果表明:用紫色芽叶加工的红茶其感官品质略优于用绿色芽叶(对照)加工而成的红茶,其滋味、香气明显优于对照.紫色芽叶中的茶多酚、儿茶素总量均较绿色芽叶高、水浸出物含量相近,氨基酸、咖啡碱含量较低;用紫色芽叶加工的红茶,其茶多酚、茶黄素、水浸出物含量高于对照,氨基酸含量略低于对照.紫色芽叶加工红茶具有较好的适制性.  相似文献   

4.
以红萝卜为原料,在新配制发酵液时预先添加少量不同浓度梯度的乳酸,通过分析泡萝卜感官评价、各品质指标的动态变化规律以及有机酸和游离氨基酸测定结果,研究在直投式发酵下,经乳酸添加后的泡萝卜发酵过程以及风味品质差异,从而改进我国规模化的工业化泡菜生产工艺。结果表明,乳酸的添加能有效加快泡萝卜颜色、质地变化,缩短盐度、可溶性总糖、总酸含量达到平衡的时间,有机酸、游离氨基酸种类、含量均优于对照组泡萝卜,处理组泡萝卜整体成熟度更高。并最终结合感官评分结果确定出0.45%为最优乳酸添加量,所发酵出的泡萝卜感官品质最佳。  相似文献   

5.
【目的】研究接种植物乳杆菌对小规模饲料稻品质的影响。【方法】以自然发酵的样品为对照,接种不同来源植物乳酸菌发酵饲料稻,发酵30 d后对饲料稻的感官进行评价;通过选择性平板对饲料稻青贮中的不同微生物进行计数;并采用V-Score评价法对发酵品质进行评定。【结果】相对自然发酵的样品而言,接种植物乳杆菌的青贮样品感官评分等级达到优良;乳酸菌为优势菌株,引起腐败变质的好氧菌、霉菌、大肠杆菌等受到抑制;接种发酵的样品中乳酸含量明显增加,氨态氮的产生量为对照的1/2左右,V-Score评分为满分。【结论】供试的植物乳杆菌,尤其是从青饲料和青贮材料中分离的菌株能有效改善饲料稻青贮的品质,可考虑用作青贮饲料稻发酵剂。  相似文献   

6.
【背景】目前对于酸菜发酵的研究主要关注点是植物乳杆菌(Lactobacillus plantarum),有关短乳杆菌(Lactobacillus brevis)在酸菜方面的研究报道很少。【目的】为了挖掘短乳杆菌的发酵性能并开发酸菜发酵剂,将2株短乳杆菌分别与1株植物乳杆菌进行组合并发酵酸菜,分析短乳杆菌对酸菜发酵品质的影响。【方法】分别测定短乳杆菌与植物乳杆菌的单菌株生长产酸性能、耐酸性及亚硝酸盐降解力,并将两菌种组合后发酵酸菜,分析1-7d内酸度、乳酸菌活菌数、亚硝酸盐含量及酸菜质构特性的变化趋势。【结果】相较于短乳杆菌Lb-9-2,短乳杆菌Lb-5-3的生长和产酸速率较慢、酸耐受力较弱,但其亚硝酸盐降解力较强。两株短乳杆菌分别与植物乳杆菌Lp-9-1组合后产酸力显著增强,并在3 d时达到最低pH值(约3.10);植物乳杆菌Lp-9-1的添加使酸菜中总体乳酸菌生长延迟,在5 d时达到最高活菌数;组合菌种的样品中亚硝酸盐含量在1-7 d内变化较为平缓,前5天内两个组合之间差异不显著;接种乳酸菌会降低酸菜硬度和弹性,发酵3d时Lb-5-3/Lp-9-1组合的硬度最大,感官评价得分最高。【...  相似文献   

7.
<正> 氨基酸不但是构成茶叶色香味的重要物质,而且对红茶、绿茶不同品质的风味形成关系甚大,故有“茶叶品质因子”之称。为了进一步探讨氨基酸对红茶、绿茶品质的影响,本文特依据氨基酸在红绿茶加工中的变化来论证它对茶叶品质形成所起的重要作用。  相似文献   

8.
白菜乳酸菌混菌发酵的研究   总被引:5,自引:0,他引:5  
研究了大白菜乳酸菌乳链球菌DM 2 2和植物乳杆菌UM 2 2混合发酵中的生长和产酸以及环境因子的影响 ,并对混菌发酵的风味物质作了分析。结果表明 :混菌发酵中 ,DM2 2在发酵前期生长迅速 ,是优势菌群 ,而UM2 2在发酵后期占主导 ;发酵温度、发酵剂组成以及发酵液盐浓度都会显著影响混合发酵中菌的产酸代谢 ;发酵风味物质与单菌发酵区别明显。  相似文献   

9.
【背景】产香酵母可赋予葡萄酒独特的香气,因此,分离筛选优良产香酵母对酿造具有地域风味的特色葡萄酒具有重要意义。【目的】从中条山野生葡萄中筛选产香酵母,进行种群鉴定和生理生化特性研究,并将其应用于葡萄酒发酵过程,研究其对葡萄酒香气成分的影响。【方法】采用稀释涂布平板法从中条山野葡萄中分离筛选酵母菌,对其进行分子生物学鉴定。优选其中具有显著香气的产香酵母,与酿酒酵母F15进行混合发酵,采用气相色谱质谱联用(gas chromatograph-mass spectrometer,GC-MS)对香气成分进行分析,采用半定量法测定香气成分含量。【结果】共分离获得各种菌株13株,26S rRNA基因D1/D2区序列分析表明它们分布于IssatchenkiaTorulasporaPichiaSaccharomycesRhodotorula等5个不同属内。优选其中一株香气较为浓郁的酵母菌株Issatchenkia orientalis strain XS-6开展研究,结果发现该菌株最高耐受乙醇浓度为8%,最高耐受NaCl浓度为6%,最适生长温度为38℃。与酿酒酵母F15混菌发酵的葡萄酒中共检测出31种香气成分。香气物质总含量较单菌发酵增加19.8%,其中11种香气成分含量增加明显,尤其是具有玫瑰香气的苯乙醇。醇类与酯类物质含量较单菌发酵增加19.6%,并发现了香草酸乙酯(ethyl vanillate)、邻苯二甲酸二丁酯(dibutyl phthalate)等7种新的酯类物质。【结论】产香酵母XS-6对乙醇、NaCl、温度等具有良好的耐受性,而且与酿酒酵母F15混菌发酵对西拉葡萄酒香气成分具有明显的影响,可能在改善葡萄酒风味方面具有潜在的应用价值。  相似文献   

10.
植物乳杆菌DY6主要抑菌代谢物的分析和鉴定   总被引:1,自引:0,他引:1  
【背景】被广泛应用于食品和饲料等多个行业的乳酸菌已成为制作生物防腐剂的研究热点。【目的】探究抑菌性能良好的植物乳杆菌DY6的抑菌物质,为其进一步应用提供参考依据。【方法】对植物乳杆菌发酵液中抑菌物质的理化特性进行研究,采用GC-MS分析发酵上清液代谢物,通过多元统计学分析方法推测主要抑菌物质,抑菌物质通过半制备进行初步分离后用GC-MS鉴定。【结果】植物乳杆菌DY6对金黄色葡萄球菌、大肠杆菌、沙门氏菌都有较强的抑制作用。采用不同发酵时间的发酵液作为研究对象,测定发酵上清液的抑菌能力,发酵0-4 h上清液无抑菌能力,发酵至8 h抑菌能力逐步上升,发酵24-48 h发酵上清液抑菌能力趋于稳定,在48 h时抑菌能力最佳,抑菌直径为15.28mm。通过多元统计学分析乳酸菌发酵液差异标志物,发现主要差异物为有机酸(如乳酸、乙酸、丙酸等)和脂肪酸(如辛酸、癸酸等)。经过半制备液相分离发酵上清液得到的抑菌组分,主要有有机酸(如乳酸、乙酸、3-苯基乳酸、苯丙酸等)和脂肪酸(如癸酸、辛酸、壬酸等),另外还有少量的醛类和醇类物质。【结论】确定了植物乳杆菌DY6的抑菌物质主要为有机酸和脂肪酸,为其进一步防腐应用提供了理论基础。  相似文献   

11.
吴莉莉  王海燕  徐岩  王栋 《微生物学通报》2013,40(12):2182-2188
【目的】为认识乳酸菌在中国白酒酿造过程中的作用与影响, 分析、比较了酱香型与清香型白酒发酵过程中乳酸菌的菌群结构及其差异。【方法】运用PCR-DGGE技术分析酱香型与清香型白酒发酵过程中乳酸菌群的演变规律。并利用传统微生物分离筛选方法进一步确定酱香型白酒发酵中的主要乳酸菌种。【结果】DGGE图谱表明, 白酒发酵过程中的主要乳酸菌种是乳杆菌。但两种香型白酒发酵过程中乳酸菌群组成及动态变化均呈现出明显的差异。清香型白酒酒醅中Lactobacillus fuchuensis是优势菌种, 而酱香型白酒发酵中检测到多种含量较高的乳酸菌种。利用MRS培养基从酱香型白酒酒醅中共筛选获得5种乳酸菌种。通过两种方法, 确定Lactobacillus homohiochii是酱香型白酒发酵过程中含量最高的乳酸菌。【结论】深入研究白酒发酵过程中乳酸菌的组成及分布规律, 对于更好地认识中国白酒酿造中主要的细菌类群——乳酸菌的作用, 具有重要的理论意义和实践价值。  相似文献   

12.
In this paper, the influence of lactic acid fermentation on the metabolic profile of ginkgo kernel juice was studied. For this purpose, three lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus casei, were selected. The results showed that all the lactobacilli grew well in ginkgo kernel juice with viable cell counts exceeding 8.0 Log CFU/mL. The organic acid contents underwent dynamic changes, and the lactic acid production reached more than 3 g/L. The consumption of sugars and free amino acids by LAB was evident. Meanwhile, more than 70% of the ginkgolic acids were degraded by LAB, and the final concentrations in ginkgo kernel juice were below 1 mg/L after 48 h of fermentation. In contrast, the terpene lactones contents in fermented ginkgo kernel juice exceed 20 mg/L, which was 1.6-fold higher than that in the unfermented juice. Certain phenolics were significantly enriched, and the total phenolic content increased by approximately 9% through fermentation. In addition, lactic acid fermentation significantly enhanced the antioxidant and antimicrobial activities of ginkgo kernel juice. Overall, the results indicated that lactic acid fermentation can effectively improve the nutritional value and safety of ginkgo kernel juice.  相似文献   

13.
AIMS: To establish the site of microbial growth on naturally black fermented table olives, and to monitor the population dynamics of yeasts and selected micro-organisms together with the changes in organic acid profile and pH in the cover brine during fermentation. METHODS AND RESULTS: During fermentation, the numbers of Enterobacteriaceae and Pseudomonas spp. in the brine decreased whilst lactic acid bacteria and yeast populations increased. Scanning electron microscopy showed that a yeast-rich biofilm developed on the epicuticular wax of the olive skin during fermentation. Yeasts also predominated in the stomatal openings, but bacteria were more numerous in intercellular spaces in the sub-stomatal flesh. Citric, malic and tartaric acids were the major organic acids accumulating in the brine during fermentation. CONCLUSIONS: Micro-organisms associated with the skin, stomata and flesh in fermenting black olives may experience different local conditions to those prevailing in the cover brine. SIGNIFICANCE AND IMPACT OF THE STUDY: These are the first observations of the micro-organisms associated with the fruit of naturally fermented black olives and of the accumulation of specific organic acids during fermentation.  相似文献   

14.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of alpha-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced alpha-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

15.
《Process Biochemistry》2007,42(1):65-70
The production of a new cereal-based probiotic foods with suitable aroma, flavor and pH using mixed culture fermentation has been investigated. This required the selection of suitable types of cereal grains and probiotic microorganisms. In a medium of 5% (w/v) malt suspension the effects of yeast presence on the fermentation of a lactic acid bacterium (LAB), Lactobacillus reuteri, was studied. With different inoculum ratios between the yeast and the LAB, the characteristics of the fermentation broth including pH and the contents of free amino nitrogen (FAN), reducing sugar, lactic acid and ethanol were investigated. It was found that LAB growth was enhanced by the introduction of the yeast. In mixed culture broth pH was lowered and the production of lactic acid and ethanol were increased in comparison against pure LAB culture.  相似文献   

16.
Indigenous fermented foods and beverages play a major role in the diet of African people. The predominant yeast species seen is Saccharomyces cerevisiae, involved in basically three groups of indigenous fermented products: non-alcoholic starchy foods, alcoholic beverages and fermented milk. These products are to a great extent made by spontaneous fermentation and consequently S. cerevisiae often coexists with other microorganisms even though a microbiological succession usually takes place both between and within species. The functions of S. cerevisiae are mainly related to formation of alcohols and other aroma compounds, but stimulation of e.g. lactic acid bacteria, improvement of nutritional value, probiotic effects, inhibition of undesired microorganisms and production of tissue-degrading enzymes may also be observed. Several different isolates of S. cerevisiae have been shown to be involved in the fermentations and some of the isolates show pheno- and genotypic characteristics that deviate from those normally recognised for S. cerevisiae.  相似文献   

17.
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.  相似文献   

18.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

19.
In order to study the prevalence and diversity of tetracycline resistant lactic acid bacteria (Tc(r) LAB) along the process line of two different fermented dry sausage (FDS) types, samples from the raw meat, the meat batter and the fermented end product were analysed quantitatively and qualitatively by using a culture-dependent approach. Both the diversity of the tet genes and their bacterial hosts in the different stages of FDS production were determined. Quantitative analysis showed that all raw meat components of both FDS types (FDS-01 and FDS-08) contained a subpopulation of Tc(r) LAB, and that for FDS-01 no Tc(r) LAB could be recovered from the samples after fermentation. Qualitative analysis of the Tc(r) LAB subpopulation in FDS-08 included identification and typing of Tc(r) LAB isolates by (GTG)5-PCR fingerprinting, plasmid profiling, protein profiling and a characterization of the resistance by PCR detection of tet genes. Two remarks can be made when the results of this analysis for the different samples are compared. (i) The taxonomic diversity of Tc(r) LAB varies along the process line, with a higher diversity in the raw meat (lactococci, lactobacilli, streptococci, and enterococci), and a decrease after fermentation (only lactobacilli). (ii) Also the genetic diversity of the tet genes varies along the process line. Both tet(M) and tet(S) were found in the raw meat, whereas only tet(M) was found after fermentation. A possible relationship was found between the disappearing of species other than lactobacilli and tet(S), because tet(S) was only found in lacotocci, enterococci, and streptococci. These data suggest that fermented dry sausages are among those food products that can serve as vehicles for Tc(r) LAB and that the raw meat already contains a subpopulation of these bacteria. Whether these results reflect the transfer of resistant bacteria or of bacterial resistance genes from animals to man via the food chain is difficult to ascertain and may require a combination of cultivation-dependent and cultivation-independent approaches.  相似文献   

20.
散囊菌属真菌(Eurotium spp.)能赋予发酵茶独特的口感和香味。本研究利用前期从广西某六堡茶中筛选并鉴定的三株散囊菌属真菌Aspergillus chevalieri E2、Aspergillus chevalieri E3与Aspergillus cristatus E6,探讨在不同温度下以优化察氏液体培养基培养的生长状况,发酵前不同灭菌条件下的茶叶品质,以及所得茶汤中茶多酚含量、总抗氧化能力和DPPH·自由基清除能力。结果显示:三株真菌在优化的察氏液体培养基中31℃~34℃下都能良好生长。茶叶发酵温度为28℃,三株真菌在发酵初始含水量为20%以上生长良好,其中E3和混合发酵组的生长速度最快。E2在茶叶表面生长出大量金黄色子囊果以及大量浅绿色分生孢子梗; E3几乎只有浅绿色分生孢子梗; E6几乎只有金黄色子囊果。发酵茶叶制作的茶汤内茶多酚含量比未发酵低,抗氧化性指标也有所下降,说明本实验真菌发酵促进了茶内抗氧化物质的氧化。本研究对源于六堡茶不同散囊菌属真菌的茶叶发酵有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号