首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Putative interactions between the Human Ether-a-go-go Related Gene (HERG), QT interval prolongation and Torsades de Pointes (TdP) are now integral components of any discussion on drug safety. HERG encodes for the inwardly rectifying potassium channel (IKr), which is essential to the maintenance of normal cardiac function. HERG channel mutations are responsible for one form of familial long QT syndrome, a potentially deadly inherited cardiac disorder associated with TdP. Moreover, drug-induced (acquired) QT interval prolongation has been associated with an increase in the incidence of sudden unexplained deaths, with HERG inhibition implicated as the underlying cause. Subsequently, a number of non-cardiovascular drugs which induce QT interval prolongation and/or TdP have been withdrawn. However, a definitive link between HERG, QT interval prolongation and arrhythmogenesis has not been established. Nevertheless, this area is subject to ever increasing regulatory scrutiny. Here we review the relationship between HERG, long QT syndrome and TdP, together with a summary of the associated regulatory issues, and developments in pre-clinical screening.  相似文献   

3.
INTRODUCTION: Drugs that delay cardiac repolarization pose potential safety risks to patients and cause serious regulatory concern because of the link between QT interval prolongation and the potentially fatal arrhythmia torsades de pointes (TdP). Predicting which drugs will cause TdP is an inexact and difficult science. The utility of non-clinical assays was not well understood due in part to variability in methods, species, and consistency in the assays reported in the literature. The Health and Environmental Sciences Institute of the International Life Sciences Institute (ILSI/HESI) outlined a set of studies to determine how well selected commonly used non-clinical assays identified compounds known to cause TdP and prolong QT interval in humans. METHODS: Compounds known to prolong ventricular repolarization and compounds considered safe by years of clinical use were tested in three assays: HERG ionic current, Purkinje fiber repolarization, and in vivo QT studies in conscious telemeterized dogs. RESULTS: The data from each of these assays demonstrate that compounds that may pose a proarrhythmia risk for patients can be distinguished from those that are considered safe. DISCUSSION: Taken collectively, the in-vitro and in-vivo preclinical results can be integrated to develop an accurate preclinical risk assessment to support clinical safety.  相似文献   

4.
INTRODUCTION: d-Propoxyphene, which was previously available in many single-agent and combination products, was recently voluntarily withdrawn from the US market following an FDA recommendation based partly on the concern that the risk associated with QT prolongation exceeded the clinical benefit of the drug. The drug had previously been withdrawn from European markets. These recent actions prompt the question: what is known about QT prolongation and analgesic drugs? AREAS COVERED: A systematic search was conducted of 50 opioid and non-opioid analgesic drugs using PubMed, the FDA website, and the Internet. Search terms for opioids, NSAIDs, acetaminophen and other analgesics were used (including both generic and brand names), along with QTc, QTc prolongation, QTc interval, hERG, torsades de pointes (TdP), ventricular arrhythmias, and other relevant terms. EXPERT OPINION: There is a paucity of available information on the QT interval for most analgesics. Of those for which there is a lot of data, only methadone, oxycodone, and LAAM (levo--acetylmethadol) appear to have a known and accepted level of effect on the QT interval.  相似文献   

5.
Investigation of the potential of clozapine to cause torsade de pointes   总被引:3,自引:0,他引:3  
Antipsychotics are frequently associated with QTc interval prolongation, a proposed marker for vulnerability to fatal ventricular arrhythmias, e.g. torsade de pointes (TdP). Little has been published on this topic in relation to clozapine. The objectives of this review were to: (i) calculate the frequency of QTc interval prolongation, T-wave abnormalities, TdP, ventricular tachycardia/fibrillation and sudden unexplained death in patients treated with clozapine and thioridazine from clinical trial and post-marketing reports; (ii) to compare these data with published findings for haloperidol, risperidone, olanzapine, sertindole and ziprasidone; and (iii) to correlate these clinical data with results from preclinical tests presently considered to be of predictive value for a compound's potential to cause QTc interval prolongation and TdP. A review of the global Novartis databases for clozapine and thioridazine and a Medline/Internet search for information on these cardiac events and for preclinical effects on the human ether-a-go-go related gene channels, action potential duration, and QT interval changes produced by the selected antipsychotics were performed. The clozapine database (2.8 million patient-years spanning 27 years) demonstrated that at therapeutic doses all but three reports of QTc interval prolongation and both of TdP were confounded by relevant co-medication/comorbidity. The literature review revealed that all antipsychotics considered except clozapine induced TdP and/or QTc interval prolongation at therapeutic doses. Preclinical in vitro tests appear to overestimate the risk of clozapine, haloperidol and risperidone to prolong QTc interval in patients and underestimate such a risk for sertindole and ziprasidone. Extrapolation of in vitro results to clinical events requires qualified interpretation.  相似文献   

6.
Following its involvement in life-threatening cardiac arrhythmias, the catchword 'hERG' has become infamous in the drug discovery community. The blockade of the ion channel coded by the human ether-á-go-go-related gene (hERG) has been correlated to a prolongation of the QT interval in the ECG, which again is correlated to a potential risk of a life-threatening polymorphic ventricular tachycardia - torsades de pointes (TdP). Therefore, in vitro investigations for blockade of this ion channel have become a standard, starting early in most drug discovery projects and often accompanying the whole project; at some stage, scientists in many medicinal chemistry programs have to deal with hERG channel liabilities. Data for the compound effects on hERG channel activity are generally part of the safety pharmacology risk assessment in regulatory submissions and, at this stage, are ideally conducted in compliance with good laboratory practice. With the withdrawal of clobutinol from the market, owing to its perceived risk of introducing TdP, the importance of the hERG channel has very recently been reconfirmed. Despite being of such importance for drug discovery, the relevance and impact of hERG data are sometimes misinterpreted, as there are drugs that block the hERG-coded ion channel but do not cause TdP, and drugs that cause TdP but do not block the hERG channel. This review aims to provide an overview of TdP, including the cardiac action potential and the ion channels involved in it, as well as on the relevance and interpretation of in vitro hERG channel data and their impact for drug discovery projects. Finally, novel cardiac safety test systems beyond in vitro hERG channel screening are discussed.  相似文献   

7.
Drug-induced cardiac arrhythmia, especially occurrence of torsade de pointes (TdP), has been a leading cause of attrition and post-approval re-labeling and withdrawal of many drugs. TdP is a multifactorial event, reflecting more than just drug-induced cardiac ion channel inhibition and QT interval prolongation. This presents a translational gap in extrapolating pre-clinical and clinical cardiac safety assessment to estimate TdP risk reliably, especially when the drug of interest is used in combination with other QT-prolonging drugs for treatment of diseases such as tuberculosis. A multi-scale mechanistic modeling framework consisting of physiologically based pharmacokinetics (PBPK) simulations of clinically relevant drug exposures combined with Quantitative Systems Toxicology (QST) models of cardiac electro-physiology could bridge this gap. We illustrate this PBPK-QST approach in cardiac risk assessment as exemplified by moxifloxacin, an anti-tuberculosis drug with abundant clinical cardiac safety data. PBPK simulations of moxifloxacin concentrations (systemic circulation and estimated in heart tissue) were linked with in vitro measurements of cardiac ion channel inhibition to predict the magnitude of QT prolongation in healthy individuals. Predictions closely reproduced the clinically observed QT interval prolongation, but no arrhythmia was observed, even at ×10 exposure. However, the same exposure levels in presence of physiological risk factors, e.g., hypokalemia and tachycardia, led to arrhythmic event in simulations, consistent with reported moxifloxacin-related TdP events. Application of a progressive PBPK-QST cardiac risk assessment paradigm starting in early development could guide drug development decisions and later define a clinical “safe space” for post-approval risk management to identify high-risk clinical scenarios.  相似文献   

8.
Evaluation of new therapeutic agents for their potential to cause QT interval prolongation and drug-induced ventricular arrhythmia, like Torsades de Pointes (TdP), is a critical activity during drug development. The QT interval has been used as a surrogate biomarker to assess ventricular repolarization effects caused by drug-induced blockade of cardiac repolarizing currents, mainly IKr, but is imperfect in predicting proarrhythmia. Evidence suggests that left ventricular mechanical dysfunction may also contribute to ventricular arrhythmias; thus, electrical and mechanical alterations may have a role in drug-induced TdP. The electromechanical window (EMw) represents the time difference between the end of electrical systole (i.e. the QT interval) and the completion of ventricular relaxation (i.e. the QLVPend interval), and appears to be a new potential biomarker for TdP risk. A reduction in the EMw (to negative values) has now been shown to be associated with the onset of TdP in an anaesthetized dog model of long QT1 syndrome. Therefore, the EMw represents a novel indicator of TdP risk that may add predictive value beyond assay of drug-induced QT interval prolongation.

LINKED ARTICLE

This article is a commentary on van der Linde et al., pp. 1444–1454 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00934.x  相似文献   

9.
Following reports of death from cardiac arrhythmias with drugs like terfenadine and cisapride, the International Conference for Harmonization formulated a guidance (E14) document. This specifies that all new drugs must undergo a ‘thorough QT/QTc’ (TQT) study to detect drug-induced QT prolongation, a surrogate marker of ventricular tachycardia, especially torsades de pointes (TdPs). With better understanding of data from several completed TQT studies, regulatory requirements have undergone some changes since the E14 guidance was implemented in October 2005. This article reviews the implications of the E14 guidance and the changes in its interpretation including choice of baseline QT, demonstration of assay sensitivity, statistical analysis of the effect of new drug and positive control, and PK-PD modelling. Some issues like use of automated QT measurements remain unresolved. Pharmaceutical companies too are modifying Phase 1 studies to detect QTc liability early in order to save time and resources. After the E14 guidance, development of several drugs that prolong QTc by >5 ms is being abandoned by sponsors. However, all drugs that prolong the QT interval do not increase risk of TdP. Researchers in regulatory agencies, academia and industry are working to find better biomarkers of drug-induced TdP which could prevent many useful drugs from being prematurely abandoned. Drug-induced TdP is a rare occurrence. With fewer drugs that prolong QT interval reaching the licensing stage, knowing which of these drugs are torsadogenic is proving to be elusive. Thus, paradoxically, the effectiveness of the E14 guidance itself has made prospective validation of new biomarkers difficult.This article is part of a themed section on QT safety. To view this issue visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2010  相似文献   

10.
Most available antimalarial drugs induce cardiac side effects. These side effects include various mild heart rate changes (amodiaquine) to excessive prolongation of the QT interval (halofantrine) which may lead to lethal arrhythmias such as Torsade de Pointes (TdP). The cellular mechanism of such events during antimalarial therapy is principally related to ion channel inhibition (e.g., human ether-a-go-go related gene channel) which may slow the repolarisation process and create a good substrate for arrhythmia (when dispersion of repolarisation is present). However, other antimalarial drugs do not show as potent cardiac side effects, like co-arthemeter and sulfadoxine-pyrimethamine. Considering that TdP are favoured by a complex combination of electrophysiological changes, a predictive cardiosafety strategy for new antimalarial drugs should comprise assays with an increasing level of information from ion channel level, cellular and organ level, to the whole organism. In this review, the actual knowledge on underlying mechanisms of QT prolongation and TdP is described, followed by the cardiac safety profiles of present antimalarial drugs.  相似文献   

11.
Antipsychotic-related QTc prolongation,torsade de pointes and sudden death   总被引:8,自引:0,他引:8  
Haddad PM  Anderson IM 《Drugs》2002,62(11):1649-1671
Sudden unexpected deaths have been reported with antipsychotic use since the early 1960s. In some cases the antipsychotic may be unrelated to death, but in others it appears to be a causal factor. Antipsychotics can cause sudden death by several mechanisms, but particular interest has centred on torsade de pointes (TdP), a polymorphic ventricular arrhythmia that can progress to ventricular fibrillation and sudden death. The QTc interval is a heart rate-corrected value that represents the time between the onset of electrical depolarisation of the ventricles and the end of repolarisation. Prolongation of the QTc interval is a surrogate marker for the ability of a drug to cause TdP. In individual patients an absolute QTc interval of >500 msec or an increase of 60 msec from baseline is regarded as indicating an increased risk of TdP. However, TdP can occur with lower QTc values or changes. Concern about a relationship between QTc prolongation, TdP and sudden death applies to a wide range of drugs and has led to the withdrawal or restricted labelling of several. Among antipsychotics available in the UK, sertindole was voluntarily suspended, droperidol was withdrawn, and restricted labelling introduced for thioridazine and pimozide. The degree of QTc prolongation is dose dependent and varies between antipsychotics reflecting their different capacity to block cardiac ion channels. Significant prolongation is not a class effect. Among currently available agents, thioridazine and ziprasidone are associated with the greatest QTc prolongation. Virtually all drugs known to cause TdP block the rapidly activating component of the delayed rectifier potassium current (I(kr)). Arrhythmias are more likely to occur if drug-induced QTc prolongation coexists with other risk factors, such as individual susceptibility, presence of congenital long QT syndromes, heart failure, bradycardia, electrolyte imbalance, overdose of a QTc prolonging drug, female sex, restraint, old age, hepatic or renal impairment, and slow metaboliser status. Pharmacodynamic and pharmacokinetic interactions can also increase the risk of arrhythmias. Further research is needed to quantify the risk of sudden death with antipsychotics. The risk should be viewed in the context of the overall risks and benefits of antipsychotic treatment. It seems prudent, where possible, to select antipsychotics that are not associated with marked QTc prolongation. If use of a QTc-prolonging drug is warranted, then measures to reduce the risk should be adopted.  相似文献   

12.
Sudden cardiac death is among the most common causes of cardiovascular death in developed countries. The majority of sudden cardiac deaths are caused by acute ventricular arrhythmia following repolarization disturbances. An important risk factor for repolarization disturbances is use of QT prolonging drugs, probably partly explained by gene–drug interactions. In this review, we will summarize QT interval physiology, known risk factors for QT prolongation, including drugs and the contribution of pharmacogenetics. The long QT syndrome can be congenital or acquired. The congenital long QT syndrome is caused by mutations in ion channel subunits or regulatory protein coding genes and is a rare monogenic disorder with a mendelian pattern of inheritance. Apart from that, several common genetic variants that are associated with QT interval duration have been identified. Acquired QT prolongation is more prevalent than the congenital form. Several risk factors have been identified with use of QT prolonging drugs as the most frequent cause. Most drugs that prolong the QT interval act by blocking hERG-encoded potassium channels, although some drugs mainly modify sodium channels. Both pharmacodynamic as well as pharmacokinetic mechanisms may be responsible for QT prolongation. Pharmacokinetic interactions often involve drugs that are metabolized by cytochrome P450 enzymes. Pharmacodynamic gene–drug interactions are due to genetic variants that potentiate the QT prolonging effect of drugs. QT prolongation, often due to use of QT prolonging drugs, is a major public health issue. Recently, common genetic variants associated with QT prolongation have been identified. Few pharmacogenetic studies have been performed to establish the genetic background of acquired QT prolongation but additional studies in this newly developing field are warranted.  相似文献   

13.
Drug-induced prolongation of the QT interval is having a significant impact on the ability of the pharmaceutical industry to develop new drugs. The development implications for a compound causing a significant effect in the 'Thorough QT/QTc Study' -- as defined in the clinical regulatory guidance (ICH E14) -- are substantial. In view of this, and the fact that QT interval prolongation is linked to direct inhibition of the hERG channel, in the early stages of drug discovery the focus is on testing for and screening out hERG activity. This has led to understanding of how to produce low potency hERG blockers whilst retaining desirable properties. Despite this, a number of factors mean that when an integrated risk assessment is generated towards the end of the discovery phase (by conducting at least an in vivo QT assessment) a QT interval prolongation risk is still often apparent; inhibition of hERG channel trafficking and partitioning into cardiac tissue are just two confounding factors. However, emerging information suggests that hERG safety margins have high predictive value and that when hERG and in vivo non-clinical data are combined, their predictive value to man, whilst not perfect, is >80%. Although understanding the anomalies is important and is being addressed, of greater importance is developing a better understanding of TdP, with the aim of being able to predict TdP rather than using an imperfect surrogate marker (QT interval prolongation). Without an understanding of how to predict TdP risk, high-benefit drugs for serious indications may never be marketed.  相似文献   

14.
Several antipsychotics are associated with the ventricular tachycardia torsade de pointes (TdP), which may lead to sudden cardiac death (SCD), because of their inhibition of the cardiac delayed potassium rectifier channel. This inhibition extends the repolarization process of the ventricles of the heart, illustrated as a prolongation of the QT interval on a surface ECG. SCD in individuals receiving antipsychotics has an incidence of approximately 15 cases per 10,000 years of drug exposure but the exact association with TdP remains unknown because the diagnosis of TdP is uncertain. Most patients manifesting antipsychotic-associated TdP and subsequently SCD have well established risk factors for SCD, i.e. older age, female gender, hypokalaemia and cardiovascular disease. QT interval prolongation is the most widely used surrogate marker for assessing the risk of TdP but it is considered somewhat imprecise, partly because QT interval changes are subject to measurement error. In particular, drug-induced T-wave changes (e.g. flattening of the T-wave) may complicate the measurement of the QT interval. Furthermore, the QT interval depends on the heart rate and a corrected QT (QTc) interval is often used to compensate for this. Several correction formulas have been suggested, with Bazett's formula the most widely used. However, Bazett's formula overcorrects at a heart rate above 80 beats per minute and, therefore, Fridericia's formula is considered more appropriate to use in these cases. Several other surrogate markers for TdP have been developed but none of them is clinically implemented yet and QT interval prolongation is still considered the most valid surrogate marker. Although automated QT interval determination may offer some assistance, QT interval determination is best performed by a cardiologist skilled in its measurement. A QT interval >500?ms markedly increases the risk for TdP and SCD, and should lead to discontinuation of the offending drug and, if present, correction of underlying electrolyte disturbances, particularly serum potassium and magnesium derangements. Before prescribing antipsychotics that may increase the QTc interval, the clinician should ask about family and personal history of SCD, presyncope, syncope and cardiac arrhythmias, and recommend cardiology consultation if history is positive.  相似文献   

15.
Recently, there has been considerable attention focused on drugs that prolong the QT interval of the electrocardiogram. This occasionally evolves to fetal, polymorphic ventricular arrhythmias, torsades de pointes. Therefore, the early detection of the risk of drug-induced QT prolongation is important for avoiding the adverse cardiovascular effect in clinical use. It has been suggested that the QT prolongation and ventricular arrhythmia caused by drugs might be secondary to their ability to interfere with cardiac potassium channels involved in action potential repolarization and in particular with rapidly activating delayed rectifier K+ current (IKr). In cardiac myocytes, IKr contributes to termination of the plateau phase of action potential. The ether-a-go-go related gene in humans expressed a K+ channel current with biophysical characteristics similar to those of IKr. Electrophysiological studies on cloned HERG channels can provide fundamental information concerning the cardiac safety profile of new developing drugs.  相似文献   

16.
近年来,临床实践有许多药物都会导致Q-T间期延长甚至尖端扭转型室性心律失常(TdP)。本文通过对1979年-2013年国内医药期刊公开报道的药物致Q-T间期延长的个案进行统计和分析,总结了56个病例的一般情况、引起Q-T间期延长的药物、发生时间及转归等,致Q-T间期延长药物中排在前三位的分别为抗心律失常药、抗微生物药、抗组胺药。大部分患者在用药后一个月内出现,停药及对症治疗后好转。临床医师应正确地认识药物致Q-T间期延长发生机制和易感因素,才能保证临床安全有效地使用药物。  相似文献   

17.
Introduction: d-Propoxyphene, which was previously available in many single-agent and combination products, was recently voluntarily withdrawn from the US market following an FDA recommendation based partly on the concern that the risk associated with QT prolongation exceeded the clinical benefit of the drug. The drug had previously been withdrawn from European markets. These recent actions prompt the question: what is known about QT prolongation and analgesic drugs?

Areas covered: A systematic search was conducted of 50 opioid and non-opioid analgesic drugs using PubMed, the FDA website, and the Internet. Search terms for opioids, NSAIDs, acetaminophen and other analgesics were used (including both generic and brand names), along with QTc, QTc prolongation, QTc interval, hERG, torsades de pointes (TdP), ventricular arrhythmias, and other relevant terms.

Expert opinion: There is a paucity of available information on the QT interval for most analgesics. Of those for which there is a lot of data, only methadone, oxycodone, and LAAM (levo--acetylmethadol) appear to have a known and accepted level of effect on the QT interval.  相似文献   

18.
The objectives of this paper are to: 1) discuss practical aspects of antipsychotic induced QT prolongation, torsades de pointes (TdP) and sudden cardiac death, 2) discuss its possible mechanisms, 3) review data for each antipsychotic medication or class of medications and, 4) present recommendations from the literature. We performed computerized searches of the biomedical literature utilizing MEDLINE and PsycINFO computer databases (1966-2001), and by reviewing bibliographies to identify all pertinent case reports, case series, and formal studies using the following search terms: antipsychotics, sudden cardiac death, and QT prolongation. QT prolongation is a dynamic phenomena affected by various factors (mood, disease states, gender, medication, etc.). Sudden cardiac death attributable to antipsychotic medications seems to occurs in a step-wise fashion beginning with QT prolongation, leading to TdP, which can progress to cardiac arrest. Blocking the rapidly-acting potassium rectifier current appears be the primary mechanism of QT prolongation in drugs known to cause TdP and sudden cardiac death. All antipsychotic medications have been shown to cause QT prolongation, however, the degree to which this occurs and the risk of TdP varies. The risk of sudden cardiac death increases with higher doses of medications, use of phenothiazines or intravenous butyrophenones, and in patients with certain medical illnesses, especially cardiac disease. In order to prevent sudden death from antipsychotic medications, we recommend obtaining screening electrocardiograms in all at-risk patients, follow-up electrocardiograms after the initiation of medication, and using the lowest effective dose of medication. If QT prolongation occurs, the risks and benefits of therapy should be considered and medication adjustments made if warranted.  相似文献   

19.
Since the 1960s, physicians have been aware of electrocardiographic (ECG) abnormalities and cases of sudden death associated with the use of antipsychotic drugs in patients with schizophrenia. Explanations for such deaths have traditionally focused on drug-induced prolongation of the QT interval leading to the development of life-threatening ventricular arrhythmias such as torsade de pointes (TdP). It is now apparent that most conventional and atypical antipsychotics can cause dose-related prolongation of the corrected QT interval (QTc), although there are important differences in the potency of individual agents. This review discusses potential mechanisms underlying QTc prolongation and arrhythmogenesis and examines the evidence for a relationship between antipsychotic drugs and prolongation of the QTc interval. New electrophysiological and epidemiological data are presented which suggest there may not be a clear-cut cause-effect relationship between QTc prolongation and the development of ventricular tachyarrhythmias for all atypical antipsychotics. For at least one of these agents (sertindole), counterbalancing mechanisms may act to reduce the risk of proarrhythmic activity arising as a result of QTc prolongation.  相似文献   

20.
Torsades de pointes (TdP) or polymorphic ventricular tachycardia owing to drug-induced QT prolongation is a common cause of withdrawal of marketed drugs and has caused increasing concern in the recent past. Carbimazole, the common antithyroid drug, is not a very well-known offender to cause QT prolongation and TdP. Only a few cases of carbimazole-induced TdP have been reported so far. We report a 53-year-old woman who was on tab. carbimazole (10 mg) twice daily for one month and who presented with respiratory distress, palpitation and syncope attack. Her surface electrocardiogram (ECG) was showing the evidence of TdP and subsequently hypokalemia was also detected. She received conservative management including potassium supplementation. However, QT prolongation persisted even after normalization of serum potassium level. Carbimazole was withdrawn and the patient was discharged as she remained stable and symptom free. This study highlights a possible association between carbimazole and TdP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号