首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Phosphorylation of histone H1 occurs when spermatozoa of the sea urchin Strongylocentrotus purpuratus are treated with the macromolecular fraction of solubilized egg jelly. Phosphorylation is on serine residues in the N-terminal fragment of H1 bisected with N-bromosuccinimide. Phosphorylation is maximal by 4-8 min and dependent on Ca2+, but independent of Na+ or increased intracellular pH. Phosphorylation of H1 can be dissociated from the induction of the acrosome reaction. Only a fraction of the H1 molecules become phosphorylated upon treatment of sperm with egg jelly. The amount of phosphate per mole of H1 increases from 0.15 moles before jelly treatment to 0.46 moles after maximal phosphorylation. Phosphorylation of H1 occurs in a cAMP-dependent manner as indicated by the ability of the phosphodiesterase inhibitors IBMX and SQ20009 to induce H1 phosphorylation. This phosphorylation reaction can be blocked by digesting the sperm surface with Pronase, or preincubation of sperm in wheat germ agglutinin, showing that a ligand in egg jelly must interact with a sperm surface receptor to activate the kinase phosphorylating H1.  相似文献   

2.
The acrosome reaction of newt sperm is induced at the surface of egg jelly and the acrosome-reacted sperm acquire the ability to bind to the vitelline envelope. However, because the substance that induces the acrosome reaction has not been identified, the mechanism by which the acrosome-reacted sperm bind to the vitelline envelope remains unclear. We found here that a Dolichos biforus agglutinin (DBA) specifically mimicked the acrosome reaction immediately upon its addition in the presence of milimolar level Ca(2+). Fluorescein isothiocyanate-labeled DBA bound specifically to the acrosomal cap of the intact sperm in the presence of a Ca(2+)-chelating agent, EDTA, suggesting that binding of DBA to the native receptor for the egg jelly substance on the acrosomal region took the place of the egg jelly substance-induced acrosome reaction. In contrast, the sperm that had been acrosome reacted by DBA treatment did not bind to the vitelline envelope of the egg whose jelly layers were removed. Subsequent addition of jelly extract caused the sperm binding to vitelline envelope, indicating that the egg jelly of the newt contains substances that are involved in not only inducing the acrosome reaction but also binding to the vitelline envelope. This is the first demonstration of the involvement of egg jelly substance in the binding of acrosome-reacted sperm to the vitelline envelope.  相似文献   

3.
In the starfish, Asterina pectinifera, egg jelly induces the degradation of sperm histones as well as the acrosome reaction. We have isolated histone degradation-inducing components from the egg jelly. The histone degradation and the acrosome reaction are induced by a co-operative action of ARIS, which is an extremely large, sulfated glycoprotein with diffusible substance(s) in the jelly. Co-ARIS I, a steroidal saponin of the jelly, is effective to induce both reactions in the presence of ARIS.  相似文献   

4.
Sea urchin sperm must undergo the acrosome reaction to fertilize eggs. The natural inducer of this reaction is the most external coat of the egg, named 'jelly'. The ionic composition of the extracellular and intracellular media and the permeability properties of the sperm plasma membrane are fundamental in this reaction. As Ca2+ is required for the acrosome reaction to occur, its intracellular concentration ([Ca2+]i) was measured with fura-2. In 10 mM Ca2+, egg jelly induced the acrosome reaction and an increase in [Ca2+]i that lasted for several minutes. However, at 0.5 or 2 mM Ca2+, it became evident that the Ca2+-influx pathway activated by jelly opened only for a few seconds; this prevented both the full increase in [Ca2+]i and the acrosome reaction even after the concentration of Ca2+ was raised to 10 mM. In the presence of jelly, the time this permeability pathway remained open was inversely related to the extracellular concentration of Ca2+ ([ Ca2+]e). Using Bisoxonol (a permeant fluorescent membrane potential probe), it was found that the jelly-induced depolarization depended on [Ca2+]e and was proportional to the increase in [Ca2+]i. Since [Ca2+]i could affect the jelly-induced Ca2+ influx through calmodulin, two of its antagonists, trifluoperazine and W-7, were tested. Both compounds blocked the acrosome reaction by inhibiting the jelly-induced increase in [Ca2+]i. W-5 at the same concentration had no effect. The results suggest that one of the jelly-activated Ca2+-influx pathways, probably a channel, is the target of the calmodulin antagonists.  相似文献   

5.
A histone heterodimer, designated as p28, which contains an Nepsilon(gamma-glutamyl)lysine cross-link between Gln9 of histone H2B and Lys5 or Lys12 of histone H4, is present in starfish (Asterina pectinifera) sperm. Treatment of sperm nuclei with micrococcal nuclease produced soluble chromatin, which was size-fractionated by sucrose-gradient centrifugation to give p28-containing oligonucleosome and p28-free mononucleosome fractions, indicating that the cross-link is internucleosomal. When sperm nuclei were incubated with monodansylcadaverine, a fluorescent amine, in the presence or absence of Ca(2+), histone H2B was modified only in the presence of Ca(2+). Gln9, in the N-terminal region, was modified, but the other Gln residues located in the internal region were not, suggesting that the modification takes place on the surface of the nucleosome core by the in situ action of a Ca(2+)-dependent nuclear transglutaminase. Treatment of sperm with the egg jelly, which activates Ca(2+) influx to induce the acrosome reaction, resulted in a significant elevation of the p28 content in the nucleus. This is the first demonstration of an in vivo activation of transglutaminase leading to the formation of a cross-link in intracellular proteins.  相似文献   

6.
In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, i.e. ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for inducing the acrosome reaction. Experimentally, ARIS and asterosap are sufficient for the induction. However, when sperm are treated only with asterosap, they become unresponsive to the egg jelly to undergo the reaction. In this study, we analysed the mechanism of the acrosome reaction, using sperm inactivation by asterosap as a clue. Asterosap causes a rapid and transient increase in intracellular cGMP through the activation of the asterosap receptor, a guanylyl cyclase, and causes an increase in intracellular Ca(2+). When sperm were pretreated with asterosap, the guanylyl cyclase seemed to be inactivated irreversibly by dephosphorylation. They were still responsive to ARIS but no longer to asterosap. However, in the presence of IBMX or zaprinast, inhibitors against phosphodiesterases (PDEs), they retained their capacity to undergo the acrosome reaction in response to the egg jelly or ARIS alone. IBMX and zaprinast suppressed the intracellular catabolism of cGMP, but not of cAMP. These results suggest that guanylyl cyclase and cGMP-specific, IBMX- and zaprinast-susceptible PDEs are involved in the regulation of the acrosome reaction.  相似文献   

7.
When spermatozoa of Arbacia punctulata are labeled with 32P and treated with soluble egg jelly, radiolabel is incorporated into histone H3. The time course of labeling correlates with the period of chromatin decondensation of sperm pronuclei in eggs. Phosphorylation is on serine and may result from increased turnover of phosphate on H3. The macromolecular fraction of egg jelly (and not the peptide fraction) is the inducer of H3 phosphorylation. The reaction is dependent on external Ca2+ and is induced by monensin and A23187. H3 phosphorylation is not induced by the phosphodiesterase inhibitor IBMX and relatively high (250 microM) concentrations of the protein kinase inhibitor H8 are needed to block the reaction, suggesting that it is cAMP independent. A surprising finding is that merely diluting the cells into Na+ free media is the most effective method to induce the radiolabeling of H3. These results are in contrast to findings on the egg jelly induced phosphorylation of histone H1 in S. purpuratus spermatozoa. These species differences must reflect the great evolutionary divergence between these two sea urchin species in the mechanism of regulation of the phosphorylation of nuclear proteins during fertilization.  相似文献   

8.
In the starfish, Asterias amurensis, three components in the jelly coat of eggs, namely acrosome reaction-inducing substance (ARIS), Co-ARIS and asterosap, act in concert on homologous spermatozoa to induce the acrosome reaction (AR). Molecular recognition between the sperm surface molecules and the egg jelly molecules must underlie signal transduction events triggering the AR. Asterosap is a sperm-activating molecule, which stimulates rapid synthesis of intracellular cGMP, pH and Ca(2+). This transient elevation of Ca(2+) level is caused by a K(+)-dependent Na(+)/Ca(2+) exchanger, and the increase of intracellular pH is sufficient for ARIS to induce the AR. The concerted action of ARIS and asterosap could induce elevate intracellular cAMP levels in starfish sperm and the sustained increase in [Ca(2+)], which is essential for the AR. The signaling pathway induced by these factors seems to be synergistically regulated to trigger the AR in starfish sperm.  相似文献   

9.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   

10.
When immotile, flagella-less sperm were added to acid-dejellied eggs of Strongylocentrotus purpuratus 11% of the eggs fertilized. Addition of soluble egg jelly increased the percentage fertilization to 90.5. Over 50% of the sperm exposed to egg jelly had undergone the acrosome reaction compared to only 3–5% in the absence of jelly. Egg jelly was added to flagella-less sperm to induce the acrosome reaction and dejellied eggs added at various times thereafter. The fertilizing capacity of the sperm decreased with first order kinetics with 50% loss by 23 sec after induction of the acrosome reaction. Intact, motile sperm bind to formaldehyde-fixed eggs with maximum binding occurring 40 sec after sperm addition. After 40 sec the sperm begin to detach from the fixed eggs and by 240 sec none remain attached. Sperm detachment from fixed eggs and loss of fertilizing capacity after the acrosome reaction show a close temporal correlation.  相似文献   

11.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

12.
Spawning marine invertebrates are excellent models for studying fertilization and reproductive isolating mechanisms. To identify variation in the major steps in sea urchin gamete recognition, we studied sperm activation in three closely related sympatric Strongylocentrotus species. Sperm undergo acrosomal exocytosis upon contact with sulfated polysaccharides in the egg-jelly coat. This acrosome reaction exposes the protein bindin and is therefore a precondition for sperm binding to the egg. We found that sulfated carbohydrates from egg jelly induce the acrosome reaction species specifically in S. droebachiensis and S. pallidus. There appear to be no other significant barriers to interspecific fertilization between these two species. Other species pairs in the same genus acrosome react nonspecifically to egg jelly but exhibit species-specific sperm binding. We thus show that different cell-cell communication systems mediate mate recognition among very closely related species. By comparing sperm reactions to egg-jelly compounds from different species and genera, we identify the major structural feature of the polysaccharides required for the specific recognition by sperm: the position of the glycosidic bond of the sulfated alpha-L-fucans. We present here one of the few examples of highly specific pure-carbohydrate signal transduction. In this system, a structural change in a polysaccharide has far-reaching ecological and evolutionary consequences.  相似文献   

13.
In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, namely ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for the induction of acrosome reaction. For the induction, ARIS alone is enough in high-Ca2+ or high-pH seawater, but, besides ARIS, the addition of either Co-ARIS or asterosap is required in normal seawater. Asterosap transiently increased both the intracellular pH (pHi) and Ca2+ ([Ca2+]i), while ARIS slightly elevated the basal level of [Ca2+]i. However, a sustained elevation of [Ca2+]i and acrosome reaction occurred if sperm were simultaneously treated with ARIS and asterosap. EGTA inhibited the sustained [Ca2+]i elevation and acrosome reaction. The sustained [Ca2+]i elevation and acrosome reaction were highly susceptible to SKF96365 and Ni2+, specific blockers of the store-operated Ca2+ channel (SOC). These results suggest that sustained [Ca2+]i elevation, mediated by the SOC-like channel, is a prerequisite for the acrosome reaction. In high-pH seawater, ARIS alone induced a prominent [Ca2+]i increase and acrosome reaction, which were similarly sensitive to SKF96365. The acrosome reaction was effectively induced by ARIS alone when pHi was artificially increased to more than 7.7. Asterosap increased pHi from 7.6 +/- 0.1 to 7.7 +/- 0.1. Furthermore, the sustained [Ca2+]i elevation and acrosome reaction, induced by a combination of ARIS and asterosap, were drastically inhibited by a slight reduction in pHi. Taking these results into account, we suggest that an asterosap-induced pHi elevation is required for triggering the ARIS-induced sustained [Ca2+]i elevation and consequent acrosome reaction.  相似文献   

14.
Zona pellucida (ZP)-induced acrosome reaction in sperm is a required step for mammalian fertilization. However, the precise mechanism of the acrosome reaction remains unclear. We previously reported that PLCdelta4 is involved in the ZP-induced acrosome reaction in mouse sperm. Here we have monitored Ca2+ responses in single sperm, and we report that the [Ca2+]i increase in response to ZP, which is essential for driving the acrosome reaction in vivo, is absent in PLCdelta4-/- sperm. Progesterone, another physiological inducer of the acrosome reaction, failed to induce sustained [Ca2+]i increases in PLCdelta4-/- sperm, and consequently the acrosome reaction was partially inhibited. In addition, we observed oscillatory [Ca2+]i increases in wild-type sperm in response to these acrosome inducers. Calcium imaging studies revealed that the [Ca2+]i increases induced by exposure to ZP and progesterone started at different sites within the sperm head, indicating that these agonists induce the acrosome reaction via different Ca2+ mechanisms. Furthermore, store-operated channel (SOC) activity was severely impaired in PLCdelta4-/- sperm. These results indicate that PLCdelta4 is an important enzyme for intracellular [Ca2+]i mobilization in the ZP-induced acrosome reaction and for sustained [Ca2+]i increases through SOC induced by ZP and progesterone in sperm.  相似文献   

15.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The exocytotic acrosome reaction (AR), which is required for fertilization, occurs when sea urchin sperm contact the egg jelly (EJ) layer. Among other physiological changes, increases in adenylyl cyclase activity, cAMP and cAMP-dependent protein kinase (PKA) activity occur coincident with the AR. By using inhibitors of PKA, a permeable analog of cAMP and the phosphodiesterase inhibitor IBMX, we show that PKA activity is required for AR induction by EJ. A minimum of six sperm proteins are phosphorylated by PKA upon exposure to EJ, as detected by a PKA substrate-specific antibody. The phosphorylation of these proteins and the percentage of acrosome reacted sperm can be regulated by PKA modulators. The fucose sulfate polymer (FSP), a major component of EJ, is the molecule that triggers sperm PKA activation. Extracellular Ca(2+) is required for PKA activation. Six sperm proteins phosphorylated by PKA were identified by tandem mass spectrometry (MS/MS) utilizing the emerging sea urchin genome. Based on their identities and localizations in sperm head and flagellum, the putative functions of these proteins in sperm physiology and AR induction are discussed.  相似文献   

17.
Sulfated polysaccharides from egg jelly are the molecules responsible for inducing the sperm acrosome reaction in sea urchins. This is an obligatory event for sperm binding to, and fusion with, the egg. The sulfated polysaccharides from sea urchins have simple, well defined repeating structures, and each species represents a particular pattern of sulfate substitution. Here, we examined the egg jellies of the sea urchin sibling species Strongylocentrotus droebachiensis and Strongylocentrotus pallidus. Surprisingly, females of S. droebachiensis possess eggs containing one of two possible sulfated fucans, which differ in the extent of their 2-O-sulfation. Sulfated fucan I is mostly composed of a regular sequence of four residues ([4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-1-->4-alpha-l-Fucp-1]n), whereas sulfated fucan II is a homopolymer of 4-alpha-l-Fucp-2(OSO3)-1 units. Females of S. pallidus contain a single sulfated fucan with the following repeating structure: [3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1]n. The egg jellies of these two species of sea urchins induce the acrosome reaction in homologous (but not heterologous) sperm. Therefore, the fine structure of the sulfated alpha-fucans from the egg jellies of S. pallidus and S. droebachiensis, which differ in their sulfation patterns and in the position of their glycosidic linkages, ensures species specificity of the sperm acrosome reaction and prevents interspecies crosses. In addition, our observations allow a clear appreciation of the common structural features among the sulfated polysaccharides from sea urchin egg jelly and help to identify structures that confer finer species specificity of recognition in the acrosome reaction.  相似文献   

18.
Response of isolated sperm plasma membranes from sea urchin to egg jelly   总被引:1,自引:0,他引:1  
The acrosome reaction in sea urchin sperm is induced by a glycoprotein jelly surrounding the egg and is accompanied by changes in ion permeability of sperm plasma membrane. In an attempt to learn what membrane components are involved in the response to jelly, we have begun to reassemble sperm membrane components into artificial membranes and assay for permeability changes mimicking those that occur in sperm. Jelly in sea water at concentrations that induce the acrosome reaction did not significantly change 45Ca2+ uptake of sonicated unilamellar vesicles made with soybean lipid only (ratio jelly:control uptake = 1.08 +/- 0.36 SD, n = 21). Experiments with pure lipid planar bilayers made with soybean lipid or a lipid extract from sperm and held at various voltages, also did not reveal substantial permeability changes at comparable jelly concentrations. Thus, jelly by itself does not change the conductance of a pure lipid bilayer. In contrast, significant (P----0.0005, t test for two sample means) 45Ca2+ uptake was observed with vesicles made by cosonicating soybean phospholipids and Strongylocentrotus purpuratus sperm membranes isolated by the method of Cross, N. L. [1983, J. Cell Sci. 59, 13-25] (ratio jelly: control uptake = 1.51 +/- 0.75, n = 20, 16 positive out of 20 experiments). The calcium uptake response of the mixed vesicles was also species-specific: it did not occur with jelly from Arbacia punctulata (ratio Arbacia jelly: control = 1.18 +/- 0.51; ratio Strongylocentrotus jelly: control = 1.71 +/- 0.97, n = 10; P----0.025, paired t statistic). Vesicles made with soybean lipid and an octyl glucoside extract of sperm membranes also responded to jelly with increased 45Ca2+ uptake. Our results indicate that we have the starting conditions to isolate and characterize the sperm membrane components that participate in the egg jelly induced permeability changes.  相似文献   

19.
The acrosome reaction (AR) is an exocytotic event that allows sperm to recognize and fuse with the egg. In the sea urchin sperm this reaction is triggered by the outer investment of the egg, the jelly, which induces ionic movements leading to increases in intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), a K(+)-dependent transient hyperpolarization which may involve K+ channels, and a depolarization which depends on external Ca2+. The present paper explores the role of the hyperpolarization in the triggering of the acrosome reaction. The artificial hyperpolarization of Lytechinus pictus sperm with valinomycin in K(+)-free seawater raised the pHi, caused a small increase in 45Ca2+ uptake, and triggered some AR. When the cells were depolarized with KCl (30 mM) 40-60 sec after the induced hyperpolarization, the pHi decreased and there was a significant increase in 45Ca2+ uptake, [Ca2+]i, and the AR. This waiting time was necessary in order to allow the pHi change required for the AR to occur. Thus, the jelly-induced hyperpolarization may lead to the intracellular alkalinization required to trigger the AR, and, on its own or via pHi, may regulate Ca2+ transport systems involved in this process. Because of the key role played by K+ in the triggering of the AR, the presence and characteristics of ion channels in L. pictus isolated sperm plasma membranes are being explored. Planar lipid bilayers into which these membranes were incorporated by fusion displayed 85 pS single channel transitions which were cation selective.  相似文献   

20.
The egg jelly-induced acrosome reaction of sea urchin sperm is accompanied by intracellular alkalinization and Ca2+ entry. We have previously shown that in the absence of egg jelly, NH4Cl, which increases intracellular pH (pHi), induces Ca2+ uptake and the acrosome reaction in sperm of the sea urchin, Strongylocentrotus purpuratus. Here we show that at a constant concentration of NH4Cl (20 mM) in seawater, sperm react less as external pH is lowered from the normal 8 to 7.25. The pH dependence of the NH4Cl response is not very sensitive to temperatures between 12 and 17 degrees C. NH4Cl (15-50 mM) stimulates Ca2+ uptake and acrosome reactions in sperm suspended in Na+-free seawater, a condition known to inhibit the inductive effect of jelly. Jelly does not further stimulate Ca2+ uptake of sperm preincubated in NH4Cl, indicating that once the permeability to Ca2+ is increased by raising the pHi, the jelly has no further effect. We have used the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide to follow the membrane potential change that occurs when NH4Cl is added. Depolarization (25 mV) is associated with the acrosome reaction when either the natural inducer, egg jelly, or NH4Cl is added to sperm. Response to both inducers is inhibited under conditions known to abolish the acrosome reaction, i.e., low-pH seawater and nisoldipine. These results indicate that the NH4Cl-induced depolarization that accompanies the reaction is probably due to the opening of channels that allow Ca2+ to enter the cell and not to the depolarization by NH4+ ions. High-K+ seawater, which depolarizes sperm, and tetraethylammonium, a K+ channel blocker, inhibit the jelly-induced depolarization and the acrosome reaction, but do not inhibit NH4Cl-induced changes. It has already been shown that nigericin promotes Ca2+ entry and the acrosome reaction in sea urchin sperm. We found that the action of this ionophore depends on the pH of normal seawater. In the absence of external Na+ (replaced by choline), nigericin does not induce the reaction and does not stimulate Ca2+ uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号