首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
  1. Endothelin-1 (ET-1) produces constriction of the rat mesenteric vascular bed in vivo via ETA and ETB receptor subtypes. The aim of this study was to investigate the relative roles of these receptor subtypes in rat isolated, endothelium-denuded, small mesenteric arteries, under pressure, by use of ET-1; the ETA receptor antagonist, BQ-123; the ETB receptor selective agonist, sarafotoxin S6c (SRTX S6c); the ETB receptor selective antagonist, BQ-788; and the ETA/ETB antagonist, TAK-044.
  2. In 3rd generation mesenteric arteries, ET-1 (10−1310−7M) produced concentration-dependent contractions (pD2 9.86). SRTX S6c (10−1210−7M) also induced concentration-dependent contractions in 53% of arteries studied, although the Emax was much less than that obtained with ET-1 (10.7±2.9% vs 101.9±2.6% of the 60 mM KCl-induced contraction).
  3. Neither ETB receptor desensitization, by a supra-maximal concentration of SRTX S6c (10−7M), nor incubation with BQ-788 (3×10−8M), had any significant effect on the ET-1 concentration-response curve, although both treatments tended to enhance rather than inhibit responses to ET-1.
  4. In the presence of BQ-123 (10−6M), responses to low concentrations of ET-1 (up to 10−10M) were unaffected but responses to concentrations of ET-1 above 10−10M were significantly inhibited.
  5. SRTX S6c desensitization followed by incubation with BQ-123 (10−6M) or co-incubation with BQ-788 (3×10−8M) and BQ-123 caused inhibition of responses to all concentrations of ET-1, resulting in a rightward shift of the ET-1 concentration-response curve. The same effect was obtained by incubation with TAK-044 (10−8M and 3×10−7M).
  6. Thus, responses of rat small mesenteric arteries to ET-1 are mediated by both ETA and ETB receptors. The relative role of ETB receptors is greater than that predicted by the small responses to SRTX S6c or by resistance of ET-1-induced contraction to ETB receptor desensitization or BQ-788. The effect of ETB receptor desensitization or blockade is only revealed in the presence of ETA receptor blockade, suggesting the presence of a ‘crosstalk'' mechanism between the receptors. These results support the concept that dual receptor antagonists, like TAK-044, may be required to inhibit completely constrictor responses to ET-1.
  相似文献   

2.
  1. Both the plasma endothelin-1 (ET-1) levels and the plasma glucose levels were markedly elevated in streptozotocin (STZ)-induced diabetic rats.
  2. The maximum contractile response of the mesenteric arterial bed to ET-1 was significantly reduced, and the vasodilatation induced by the ETB-receptor agonist IRL-1620 in the mesenteric arterial bed was significantly reduced in STZ-induced diabetic rats.
  3. ET-1 (10−8M) caused a transient vasodilatation followed by a marked vasoconstriction in methoxamine-preconstricted mesenteric arterial beds. The ET-1-induced vasodilatation was significantly larger in beds from diabetic rats than in those from age-matched controls. By contrast, the ET-1-induced vasoconstriction was significantly smaller in STZ-induced diabetic rats than in the controls.
  4. Both removal of the endothelium with Triton X-100 and preincubation with BQ-788 (10−6M) (ETB-receptor antagonist) abolished the ET-1-induced vasodilatation. Preincubation with BQ-485 (10−6M) or BQ-123 (3×10−6) (ETA-receptor antagonist) significantly augmented the ET-1-induced vasodilatation in control mesenteric arterial beds, but not that in beds from diabetic rats.
  5. These results demonstrate that marked increases not only in plasma glucose, but also in plasma ET-1 occur in STZ-induced diabetic rats. We suggest that the decreased contractile response and the increased vasodilator response of the mesenteric arterial bed to ET-1 may both be due to desensitization of ETA receptors, though ETB receptors may also be desensitized. This desensitization may result from the elevation of the plasma ET-1 levels seen in STZ-induced diabetic rats.
  相似文献   

3.
  1. The aim of study was to characterize endothelin (ET)-induced vasodilatation in isolated extrapulmonary rat arteries (EPA) and in intrapulmonary arteries (IPA) preconstricted with 1 μM phenylephrine.
  2. The ET-3 (1 nM–100 nM)- and ET-1 (10 nM–100 nM)-induced transient vasodilatations in EPA were more potent than those in IPA. The vasodilatation induced by ET-3 (100 nM) was larger than that induced by ET-1 (100 nM).
  3. Both the ETB antagonist, BQ788 (3 μM) and or endothelium denudation, but not the ETA antagonist, BQ123 (3 μM), abolished the vasodilatation induced by ET-1 or ET-3 (100 nM each) in EPA and in IPA. The ATP-sensitive K+channel blocker, glibenclamide (20 μM) and the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 1 mM) suppressed the ET-induced vasodilatation in EPA and in IPA.
  4. We conclude that the vasodilatation induced by endothelins is markedly reduced in rat isolated IPA, and suggest that the endothelial ETB-mediated vasodilatation varies depending on rat pulmonary arterial regions. Furthermore, ETB-mediated vasodilatation involves activation of ATP-sensitive K+ channels and of nitric oxide synthase in rat isolated EPA and IPA.
  相似文献   

4.
  1. Desensitization of ETA endothelin receptor (ETAR) was compared between the rat and guinea-pig with regard to negative chronotropic response (NC) in the right atria (RA).
  2. ET-1 (100 nM) produced distinct NC in the presence of BQ788 (300 nM), and positive chronotropic response (PC) in the presence of BQ123 (1 μM) in both species, showing that ETAR and ETB endothelin receptor (ETBR) mediate NC and PC, respectively.
  3. Repetitive applications of ET-1 (50 nM) desensitized PC, and the second application only induced a strong NC in both species. Later applications of ET-1 produced virtually no response in the rat RA, whereas they produced BQ123-sensitive NCs repetitively in guinea-pig RA, exhibiting marked species difference in desensitization of ETAR-mediated NC.
  4. Pretreatment with staurosporine (100 nM) prevented desensitization of ETAR in the rat RA altogether. However, phorbol 12-myristate 13-acetate (PMA, 300 nM) failed to induce, but rather hampered, desensitization of ETAR.
  5. Partial amino acid sequencing of ETARs, spanning from the 2nd through the 4th intracellular loops, revealed that all the potential Ser/Thr phosphorylation sites, including a protein kinase C (PKC) site, are conserved among guinea-pigs, rats, rabbits, bovines and humans.
  6. In guinea pig RA, pretreatment with okadaic acid (1 μg ml−1) and PMA did not facilitate desensitization of ETAR whereas these agents successfully desensitized ETAR during combined stimulation of β-adrenoceptor and ETAR by isoproterenol (300 nM) and ET-1 (100 nM).
  7. These results suggest that species differences in desensitization of ETAR are not caused by differences in the site(s) of, but caused by differences in the environment for phosphorylation of the receptor. Desensitization of ETAR appears to require phosphorylation of the receptor by PKC as well as a kinase stimulated by β-adrenoceptor activation.
  相似文献   

5.
  1. The endothelin (ET) receptor subtype that mediates niric oxide (NO)-dependent airway relaxation in tracheal tube preparations precontracted with carbachol and pretreated with indomethacin was investigated. The release of NO induced by ET from guinea-pig trachea using a recently developed porphyrinic microsensor was also measured.
  2. ET-1 (1 pM–100 nM) contracted tracheal tube preparations pretreated with the NO-synthase inhibitor, L-NMMA, and relaxed, in an epithelium-dependent manner, preparations pretreated with the inactive enantiomer D-NMMA. The effect of L-NMMA was reversed by L-Arg, but not by D-Arg.
  3. The selective ETB receptor agonists, IRL 1620 or sarafotoxin S6c, both (1 pM–100 nM) contracted tracheal tube preparations in a similar manner either after treatment with D-NMMA or with L-NMMA. In the presence of the ETA receptor antagonist, FR139317 (10 μM), ET-1 administration resulted in a contraction that was similar after either L-NMMA or D-NMMA. In the presence of the ETB receptor antagonist, BQ788 (1 μM), ET-1 relaxed and contracted tracheas pretreated with D-NMMA and L-NMMA, respectively.
  4. Exposure of tracheal segments to ET-1 (1–1000 nM) caused a concentration-dependent increase in NO release that was reduced by L-NMMA. IRL1620 (1 μM) did not cause any significant NO release. FR139317 (10 μM), but not, BQ788 (1 μM), inhibited the NO release induced by ET-1.
  5. These results demonstrate that in the isolated guinea-pig trachea activation of ETB receptors results in a contractile response, whereas activation of ETA receptors cause both a contraction, and an epithelium-dependent relaxation that is mediated by NO release.
  相似文献   

6.
  1. To examine further the potentiation by endothelin-1 on the vascular response to sympathetic stimulation, we studied the isometric response of isolated segments, 2 mm long, from the rabbit central ear artery to electrical field stimulation (1–8 Hz), under different conditions, at 37°C and during cooling (30°C).
  2. Electrical stimulation produced frequency-dependent contraction, which was reduced (about 63% for 8 Hz) during cooling. At 30°C, but not at 37°C, endothelin-1 (1, 3 and 10 nM) potentiated the contraction to electrical stimulation in a dose-dependent way (from 43±7% to 190±25% for 8 Hz).
  3. This potentiation by endothelin-1 was reduced by the antagonist for endothelin ETA receptors BQ-123 (10 μM) but not by the antagonist for endothelin ETB receptors BQ-788 (10 μM). The agonist for endothelin ETB receptors IRL-1620 (0.1 μM) did not modify the contraction to electrical stimulation.
  4. The blocker of L-type Ca2+ channels verapamil (10 μM l−1) reduced (about 72% for 8 Hz) and the unspecific blocker of Ca2+-channels NiCl2 (1 mM) practically abolished (about 98%), the potentiating effects of endothelin-1 found at 30°C.
  5. Inhibition of nitric oxide synthesis with NG-nitro-L-arginine (L-NOARG, 0.1 mM) increased the contraction to electrical stimulation at 30°C more than at 37°C (for 8 Hz, this increment was 297±118% at 30°C, and 66±15% at 37°C). Endothelium removal increased the contraction to electrical stimulation at 30°C (about 91% for 8 Hz) but not at 37°C. Both L-NOARG and endothelium removal abolished the potentiating effects of endothelin-1 on the response to electrical stimulation found at 30°C.
  6. These results in the rabbit ear artery suggest that during cooling, endothelin-1 potentiates the contraction to sympathetic stimulation, which could be mediated at least in part by increasing Ca2+ entry after activation of endothelin ETA receptors. This potentiating effect of endothelin-1 may require the presence of an inhibitory tone due to endothelial nitric oxide.
  相似文献   

7.
  1. The influence of endothelin receptor antagonists on febrile responses to E. coli lipopolysaccharide (LPS), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and endothelin-1 (ET-1) was assessed in conscious rats.
  2. Intravenous (i.v.) LPS (5.0 μg kg−1) markedly increased rectal temperature to a peak of 1.30°C over baseline at 2.5 h. Pretreatment with the mixed endothelin ETA/ETB receptor antagonist bosentan (10 mg kg−1, i.v.) or the selective endothelin ETB receptor antagonist BQ-788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-γ-methylleucyl-D-1-methoxycarboyl-D-norleucine; 3 pmol, into a lateral cerebral ventricle–i.c.v.) reduced the peak response to LPS to 0.90 and 0.75°C, respectively. The selective endothelin ETA receptor antagonist BQ-123 (cyclo[D-Trp-D-Asp-Pro-D-Val-Leu]; 3 pmol, i.c.v.) was ineffective.
  3. Increases in temperature caused by IL-1β (180 fmol, i.c.v.), TNF-α (14.4 pmol, i.c.v.) or IL-1β (150 pmol kg−1, i.v.) were unaffected by BQ-788 (3 pmol, i.c.v.).
  4. Central injection of endothelin-1 (0.1 to 3 fmol, i.c.v.) caused slowly-developing and long-lasting increases in rectal temperature (starting 2 h after administration and peaking at 4–6 h between 0.90 and 1.15°C) which were not clearly dose-dependent. The response to endothelin-1 (1 fmol, i.c.v.) was prevented by BQ-788, but not by BQ-123 (each at 3 pmol, i.c.v.). Intraperitoneal pretreatment with the cyclo-oxygenase inhibitor indomethacin (2 mg kg−1), which partially reduced LPS-induced fever, did not modify the hyperthermic response to endothelin-1 (3 fmol, i.c.v.).
  5. Therefore, central endothelin(s) participates importantly in the development of LPS-induced fever, via activation of a prostanoid-independent endothelin ETB receptor-mediated mechanism possibly not situated downstream from IL-1β or TNF-α in the fever cascade.
  相似文献   

8.
  1. In the oesophageal muscularis mucosae, we examined the effects of endothelin-1 (ET-1), endothelin-2 (ET-2), endothelin-3 (ET-3) and sarafotoxin S6c (SX6c) as agonists, and FR139317, BQ-123 and RES-701-1 as endothelin receptor antagonists.
  2. All of the endothelins produced tonic contractions which were frequently superimposed on rhythmic motility in a concentration-dependent manner. The order of potency (−log EC50) was ET-1 (8.61)=SX6c (8.65)>ET-2 (8.40)>ET-3 (8.18).
  3. FR139317 (1–3 μM) and BQ-123 (1 μM) caused parallel rightward shifts of the concentration-response curve to ET-1, but at higher concentrations caused no further shift. RES-701-1 (3 μM) caused a rightward shift of the concentration-response curve to ET-1, while RES-701-1 (10 μM) had no additional effect. RES-701-1 (0.1–1 μM) concentration-dependently caused a rightward shift of the concentration-response curve to SX6c. The contraction to ET-1 (10 nM) in preparations desensitized to the actions of SX6c was greatly inhibited by pretreatment with FR139317 (10 μM).
  4. Modulation of the Ca2+ concentration in the Krebs solution caused the concentration-response curve to ET-1 or SX6c to shift to the right and downward as external Ca2+ concentrations decreased. Verapamil (30 μM) abolished rhythmic motility induced by ET-1 or SX6c. Ni2+ (0.1 mM) weakly inhibited ET-1- or SX6c-induced tonic contraction. SK&F 96365 (60 μM) completely inhibited ET-1-induced contractions.
  5. We conclude that there are two types of ET-receptors, excitatory ETA- and ETB-receptors in the oesophageal muscularis mucosae. These receptors mediate tonic contractions predominantly by opening receptor-operated Ca2+ channels (ROCs) and partly by opening T-type Ca2+ channels, and mediate rhythmic motility by opening L-type Ca2+ channels.
  相似文献   

9.
  1. The effect of protein tyrosine kinase inhibitors on human adenosine A1 receptor-mediated [3H]-inositol phosphate ([3H]-IP) accumulation has been studied in transfected Chinese hamster ovary cells (CHO-A1) cells.
  2. In agreement with our previous studies the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated the accumulation of [3H]-IPs in CHO-A1 cells. Pre-treatment with the broad spectrum tyrosine kinase inhibitor genistein (100 μM; 30 min) potentiated the responses elicited by 1 μM (199±17% of control CPA response) and 10 μM CPA (234±15%). Similarly, tyrphostin A47 (100 μM) potentiated the accumulation of [3H]-IPs elicited by 1 μM CPA (280±32%).
  3. Genistein (EC50=13.7±1.2 μM) and tyrphostin A47 (EC50=10.4±3.9 μM) potentiated the [3H]-IP response to 1 μM CPA in a concentration-dependent manner.
  4. Pre-incubation with the inactive analogues of genistein and tyrphostin A47, daidzein (100 μM; 30 min) and tyrphostin A1 (100 μM; 30 min), respectively, had no significant effect on the accumulation of [3H]-IPs elicited by 1 μM CPA.
  5. Genistein (100 μM) had no significant effect on the accumulation of [3H]-IPs produced by the endogenous thrombin receptor (1 u ml−1; 100±10% of control response). In contrast, tyrphostin A47 produced a small augmentation of the thrombin [3H]-IP response (148±13%).
  6. Genistein (100 μM) had no effect on the [3H]-IP response produced by activation of the endogenous Gq-protein coupled CCKA receptor with the sulphated C-terminal octapeptide of cholecystokinin (1 μM CCK-8; 96±6% of control). In contrast, tyrphostin A47 (100 μM) caused a small but significant increase in the response to 1 μM CCK-8 (113±3% of control).
  7. The phosphatidylinositol 3-kinase inhibitor LY 294002 (30 μM) and the MAP kinase kinase inhibitor PD 98059 (50 μM) had no significant effect on the [3H]-IP responses produced by 1 μM CPA and 1 μM CCK-8.
  8. These observations suggest that a tyrosine kinase-dependent pathway may be involved in the regulation of human adenosine A1 receptor mediated [3H]-IP responses in CHO-A1 cells.
  相似文献   

10.
  1. We have characterized the human smooth muscle endothelin converting enzyme (ECE) present in the media of the endothelium-denuded human umbilical vein preparation.
  2. Endothelin-1 (ET-1) and ET-2 were potent constrictors of umbilical vein with EC50 values of 9.2 nM and 29.6 nM, respectively. ET-1 was at least 30 times more potent than ET-3 suggesting the presence of constrictor ETA receptors. Little or no response was obtained to the ETB-selective agonist sarafotoxin 6c. These data suggest that endothelin-mediated vasoconstriction is via ETA receptors in this preparation.
  3. Autoradiographical visualization of endothelin receptors with subtype selective ligands confirmed the predominance of the ETA receptor in the media of umbilical vein. High density of binding was obtained with the ETA selective [125I]-PD151242, with much lower levels detected with the ETB selective [125I]-BQ3020.
  4. Big ET-1 (EC50=42.7 nM) and big ET-2(1-38) (EC50=99.0 nM) were less potent than ET-1 and ET-2, respectively. Big ET-2(1-38) was more potent than its isoform big ET-2(1-37) with concentration–response curves to big ET-2(1-37) incomplete at 300 nM. No response was obtained to big ET-3 at concentrations up to 700 nM. The C-terminal fragments, big ET-1(22-38) and big ET-2(22-38) were inactive.
  5. Responses to ET-1 were unaffected by either the neutral endopeptidase (NEP) inhibitor thiorphan (10−5M) or by the dual NEP/ECE inhibitor phosphoramidon (10−5M). Big ET-1 was also unaffected by thiorphan but antagonized in a concentration-dependent manner by phosphoramidon (10−5M and 10−4M).
  6. Addition of all four big endothelin peptides to human umbilical vein preparations resulted in detectable amounts of ET-IR in the bathing medium. Therefore, although big ET-3 was functionally inactive this reflects the low potency of ET-3 at the ETA receptor rather than the lack of ability of this smooth muscle ECE to convert big ET-3 to ET-3.
  7. To conclude we have demonstrated the presence of a phosphoramidon-sensitive ECE on the smooth muscle layer of the human umbilical vein which can convert big ET-1, big ET-2(1-37), big ET-2(1-38) and big ET-3 to their mature biologically active forms. The precise subcellular localization of this enzyme and its physiological relevance remains to be determined.
  相似文献   

11.
  1. We have synthesized a new low molecular weight, non-peptide radioligand, [125I]-PD164333, an analogue of the orally active butenolide antagonists of the endothelin ETA receptor.
  2. Analysis of saturation binding assays demonstrated that [125I]-PD164333 bound with high affinity to a single population of receptors (n⩾3 individuals ±s.e.mean) in human aorta (KD=0.26±0.08 nM; Bmax=8.8±3.95 fmol mg-1 protein), left ventricle from the heart (KD=0.16±0.02 nM; Bmax=34.2± 3.02 fmol mg-1 protein) and kidney (KD=1.24±0.16 nM; Bmax=125.3±35.07 fmol mg-1 protein). In each case Hill slopes were close to unity.
  3. In kinetic experiments, the binding of [125I]-PD164333 to ETA receptors in sections of heart was time-dependent and rapid at 23°C. The data were fitted to a one site model, with an association rate constant (K1 of 2.66±0.213×108 M-1 min-1, and a half-time for association of 11 min. The binding was reversible at 23°C: analysis of the data indicated [125I]-PD164333 dissociated from a single site, with a dissociation rate constant of 0.0031±0.0004 min-1, a half-time for dissociation of 216 min and a KD calculated from these kinetic data of 0.01 nM.
  4. Unlabelled PD164333 inhibited the binding of [125I]-ET-1 to left ventricle (which expresses both subtypes) in a biphasic manner with a KDETA of 0.99±0.32 nM and KDETB of 2.41±0.22 μM, giving a selectivity of 2500 fold. ETA-selective ligands competed monophasically for [125I]-PD164333 binding in left ventricle, a one site fit was preferred to a two site model giving similar nanomolar affinities: BQ123, KD=3.93 ±0.18 nM; FR139317 KD=3.53±0.69 nM. In contrast, the ETB selective agonists, BQ3020 and sarafotoxin S6c (1 μM) did not inhibit binding.
  5. In human isolated saphenous vein, unlabelled PD164333 was a functional antagonist, producing parallel rightward shifts of the endothelin-1 (ET-1) concentration-response curve (pA2=8.84) and a slope of unity.
  6. In the human brain, autoradiography revealed high levels of [125I]-PD164333 binding to the pial arteries of the cerebral cortex and to the numerous smaller intercerebral vessels penetrating the underlying grey and white matter. Conduit and resistance vessels contributing to the control of blood pressure from the heart, kidney, lungs and adrenal also displayed high densities of binding. In diseased vessels, binding of [125I]-PD164333 was confined to the medial layer of both coronary arteries with advanced atherosclerotic lesions or occluded saphenous vein grafts. In contrast, little or no binding was detected in the proliferated smooth muscle of the intimal layer or occluded lesion.
  7. These results show [125I]-PD164333 is a specific, high affinity, reversible non-peptide radioligand for human ETA receptors, which will facilitate the further characterization of this subtype, in vitro and in vivo.
  相似文献   

12.
  1. In vitro studies were performed to examine the mechanisms underlying substance P-induced enhancement of constriction rate in guinea-pig mesenteric lymphatic vessels.
  2. Substance P caused an endothelium-dependent increase in lymphatic constriction frequency which was first significant at a concentration of 1 nM (115±3% of control, n=11) with 1 μM, the highest concentration tested, increasing the rate to 153±4% of control (n=9).
  3. Repetitive 5 min applications of substance P (1 μM) caused tachyphylaxis with tissue responsiveness tending to decrease (by an average of 23%) and significantly decreasing (by 72%) for application at intervals of 30 and 10 min, respectively.
  4. The competitive antagonist of tachykinin receptors, spantide (5 μM) and the specific NK1 receptor antagonist, WIN51708 (10 μM) both prevented the enhancement of constriction rate induced by 1 μM substance P.
  5. Endothelial cells loaded with the Ca2+ sensing fluophore, fluo 3/AM did not display a detectable change in [Ca2+]i upon application of 1 μM substance P.
  6. Inhibition of nitric oxide synthase by NG nitro-L-arginine (L-NOARG; 100 μM) had no significant effect on the response induced by 1 μM substance P.
  7. The enhancement of constriction rate induced by 1 μM substance P was prevented by the cyclo-oxygenase inhibitor, indomethacin (3 μM), the thromboxane A2 synthase inhibitor, imidazole (50 μM), and the thromboxane A2 receptor antagonist, SQ29548 (0.3 μM).
  8. The stable analogue of thromboxane A2, U46619 (0.1 μM) significantly increased the constriction rate of lymphangions with or without endothelium, an effect which was prevented by SQ29548 (0.3 μM).
  9. Treatment with pertussis toxin (PTx; 100 ng ml−1) completely abolished the response to 1 μM substance P without inhibiting either the perfusion-induced constriction or the U46619-induced enhancement of constriction rate.
  10. Application of the phospholipase A2 inhibitor, antiflammin-1 (1 nM) prevented the enhancement of lymphatic pumping induced by substance P (1 μM), without inhibiting the response to either U46619 (0.1 μM) or acetylcholine (10 μM).
  11. The data support the hypothesis that the substance P-induced increase in pumping rate is mediated via the endothelium through NK1 receptors coupled by a PTx sensitive G-protein to phospholipase A2 and resulting in generation of the arachidonic acid metabolite, thromboxane A2, this serving as the diffusible activator.
  相似文献   

13.
  1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit γ-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels.
  2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique.
  3. GABA (50 μM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3–10 μM) and picrotoxin (0.3–10 μM), with IC50 values and 95% confidence intervals (CI) of 1.2 μM (1.1–1.4) and 3.6 μM (3.0–4.3), respectively, and were potentiated by sodium pentobarbitone (30 μM) and diazepam (1 μM) to (mean±s.e.mean) 168±18% and 117±4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 μM)-evoked responses were inhibited by MDL 72222 (1 μM) to 10±4% of control; DMPP (10 μM)-evoked responses were inhibited by hexamethonium (100 μM) to 12±5% of control, and αbMeATP (30 μM)-evoked responses were inhibited by PPADS (10 μM) to 21±5% of control. Together, these data are consistent with activation of GABAA, 5-HT3, nicotinic ACh and P2X receptors, respectively.
  4. Ciprofloxacin (10–3000 μM) inhibited GABAA-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 μM (148–275). BPAA (1–1000 μM) had little or no effect on the GABAA-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times.
  5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 μM), BPAA (100 μM) or the combination of these drugs (both at 100 μM).
  6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 μM (2.8–4.5), a value not significantly different from that determined in the vagus nerve. Ciprofloxacin also inhibited the GABA-evoked response with an IC50 of 334 μM (256–437) and BPAA (100 μM) potentiated these antagonist effects. However, the magnitude of the synergy was 48 times less than that seen in the vagus nerve.
  7. These data indicate that ciprofloxacin and BPAA are selective antagonists of GABAA receptors, an action that may contribute to their excitatory effects in vivo. Additionally, our data suggest that the molecular properties of GABAA receptors in different regions of the CNS influence the extent to which these drugs synergistically inhibit the GABAA receptor.
  相似文献   

14.
  1. We examined the endothelin (ET) receptors mediating contractions to ET-1, ET-3 and sarafotoxin S6c (SX6c) in rat pulmonary resistance arteries by use of peptide and non-peptide ET receptor antagonists. Changes induced by pulmonary hypertension were examined in the chronically hypoxic rat. The effect of the mixed ETA/ETB receptor antagonist SB 209670 on endothelin-mediated contraction was also examined in human pulmonary resistance arteries.
  2. In rat vessels, the order of potency for the endothelin agonists was SX6c=ET-3>ET-1 (pEC50 values in control rats: 9.12±0.10, 8.76±0.14 and 8.12±0.04, respectively). Maximum contractions induced by ET-3 and ET-1 were increased in vessels from chronically hypoxic rats.
  3. The ETA receptor antagonist FR 139317 (1 μM) had no effect on the potency of ET-1 in any vessel studied but abolished the increased response to ET-1 in the chronically hypoxic vessels. The ETA receptor antagonist BMS 182874 (1 μM) increased the potency of ET-1 in control rat vessels without effecting potency in the pulmonary hypertensive rat vessels.
  4. Bosentan (non-peptide mixed ETA/ETB receptor antagonist) increased the potency of ET-1 in control rat vessels but was without effect in the pulmonary hypertensive rat vessels. Bosentan (1 μM) inhibited responses to SX6c in control and chronically hypoxic rat vessels with pKb values of 5.84 and 6.11, respectively. The ETB receptor antagonist BQ-788 (1 μM) did not inhibit responses to ET-1 in any vessel tested but did inhibit responses to both SX6c and ET-3 (pKb values in control and chronically hypoxic rat vessels respectively: SX6c 7.15 and 7.22; ET-3: 6.68 and 6.89). BQ-788 (1 μM) added with BMS 182874 (10 μM) did not inhibit responses to ET-1 in control vessels but caused a significant inhibition of responses to ET-1 in chronically hypoxic preparations.
  5. SB 209670 inhibited responses to ET-1 in both control and chronically hypoxic vessels with pKb values of 7.36 and 7.39, respectively. SB 209670 (0.1 and 1 μM) virtually abolished responses to ET-1 in the human pulmonary resistance artery.
  6. In conclusion, in rat pulmonary resistance arteries, vasoconstrictions induced by ET-1, SX6c and ET-3 are mediated predominantly by activation of an ETB–like receptor. However, lack of effect of some antagonists on ET-1 induced vasoconstriction suggests that ET-1 stimulates an atypical ETB receptor. The increase in potency of ET-1 in the presence of some antagonists suggests the presence of an inhibitory ETA-like receptor. The influence of this is reduced, or absent, in the chronically hypoxic rats. Increased responses to ET-1 are observed in the chronically hypoxic rat and may be mediated by increased activation of ETA receptors. SB 209670 is unique in its potency against responses to ET-1 in both control and chronically hypoxic rats, as well as human, isolated pulmonary resistance arteries.
  相似文献   

15.
  1. The mitogen-activated protein (MAP) kinase signalling pathway can be activated by a variety of heterotrimeric Gi/Go protein-coupled and Gq/G11 protein-coupled receptors. The aims of the current study were: (i) to investigate whether the Gi/Go protein-coupled adenosine A1 receptor activates the MAP kinase pathway in transfected Chinese hamster ovary cells (CHO-A1) and (ii) to determine whether adenosine A1 receptor activation would modulate the MAP kinase response elicited by the endogenous P2Y2 purinoceptor.
  2. The selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50 7.1±0.4 nM). CPA-mediated increases in MAP kinase activity were blocked by PD 98059 (50 μM; 89±4% inhibition), an inhibitor of MAP kinase kinase 1 (MEKI) activation, and by pre-treating cells with pertussis toxin (to block Gi/Go-dependent pathways).
  3. Adenosine A1 receptor-mediated activation of MAP kinase was abolished by pre-treatment with the protein tyrosine inhibitor, genistein (100 μM; 6±10% of control). In contrast, daidzein (100 μM), the inactive analogue of genistein had no significant effect (96±12 of control). MAP kinase responses to CPA (1 μM) were also sensitive to the phosphatidylinositol 3-kinase inhibitors wortmannin (100 nM; 55±8% inhibition) and LY 294002 (30 μM; 40±5% inhibition) but not to the protein kinase C (PKC) inhibitor Ro 31-8220 (10 μM).
  4. Activation of the endogenous P2Y2 purinoceptor with UTP also stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50=1.6±0.3 μM). The MAP kinase response to UTP was partially blocked by pertussis toxin (67±3% inhibition) and by the PKC inhibitor Ro 31-8220 (10 μM; 45±5% inhibition), indicating the possible involvement of both Gi/Go protein and Gq protein-dependent pathways in the overall response to UTP.
  5. CPA and UTP stimulated concentration-dependent increases in the phosphorylation state of the 42 kDa and 44 kDa forms of MAP kinase as demonstrated by Western blotting.
  6. Co-activation of CHO-A1 cells with CPA (10 nM) and UTP (1 μM) produced synergistic increases in MAP kinase activity which were not blocked by the PKC inhibitor Ro 31-8220 (10 μM).
  7. Adenosine A1 and P2Y2 purinoceptor activation increased the expression of luciferase in CHO cells transfected with a luciferase reporter gene containing the c-fos promoter. However, co-activating these two receptors produced only additive increases in luciferase expression.
  8. In conclusion, our studies have shown that the transfected adenosine A1 receptor and the endogenous P2Y2 purinoceptor couple to the MAP kinase signalling pathway in CHO-A1 cells. Furthermore, co-stimulation of the adenosine A1 receptor and the P2Y2 purinoceptor produced synergistic increases in MAP kinase activity but not c-fos mediated luciferase expression.
  相似文献   

16.
  1. The site(s) at which P2-receptor agonists act to evoke contractions of the rat isolated tail artery was studied by use of P2-receptor antagonists and the extracellular ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Suramin (1 μM–1 mM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (0.3–300 μM) inhibited contractions evoked by equi-effective concentrations of α,β-methyleneATP (α,β-meATP) (5 μM), 2-methylthioATP (2-meSATP) (100 μM) and adenosine 5′-triphosphate (ATP) (1 mM) in a concentration-dependent manner. Responses to α,β-meATP and 2-meSATP were abolished, but approximately one third of the peak response to ATP was resistant to suramin and PPADS.
  3. Contractions evoked by uridine 5′-triphosphate (UTP) (1 mM) were slightly inhibited by suramin (100 and 300 μM) and potentiated by PPADS (300 μM).
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by 2-meSATP (100 μM) and reduced those to ATP (1 mM) and UTP (1 mM) to 15±3% and 68±4% of control.
  5. Responses to α,β-meATP (5 μM) and 2-meSATP (100 μM) were abolished when tissues were bathed in nominally calcium-free solution, while the peak contractions to ATP (1 mM) and UTP (1 mM) were reduced to 24±6% and 61±13%, respectively, of their control response.
  6. ARL 67156 (3–100 μM) potentiated contractions elicited by UTP (1 mM), but inhibited responses to α,β-meATP (5 μM), 2-meSATP (100 μM) and ATP (1 mM) in a concentration-dependent manner.
  7. These results suggest that two populations of P2-receptors are present in the rat tail artery; ligand-gated P2X1-receptors and G-protein-coupled P2Y-receptors.
  相似文献   

17.
  1. A high density of receptors for somatostatin (SRIF) exists in the anterior cingulate cortex but their function is unknown. Whole-cell patch clamp recordings were made from visualized deep layer pyramidal cells of the rat anterior cingulate cortex contained in isolated brain slices to investigate the putative effects of SRIF and to identify the receptor subtype(s) involved.
  2. SRIF (1–1000 nM) produced a concentration-dependent outward current which was associated with an increased membrane conductance, was sensitive to Ba2+ (300 μM–1 mM), and was absent in the presence of a maximal concentration of the GABAB receptor agonist, baclofen (100 μM). These observations suggest the outward current was carried by K+ ions.
  3. SRIF analogues also elicited outward currents with a rank potency order of (EC50, nM): octreotide (1.8)>BIM-23027 (3.7)>SRIF (20)=L-362,855 (20). BIM-23056 was without agonist or antagonist activity. Responses to L-362,855 were unlike those to the other agonists since they were sustained for the duration of the application.
  4. The sst2 receptor antagonist, L-Tyr8Cyanamid 154806 (1 μM), had no effect alone but partially reversed responses to submaximal concentrations of SRIF (100 nM, 44±6% reversal) and L-362,855 (100 nM, 70±6% reversal) and fully reversed the response to BIM-23027 (10 nM). In contrast, L-Tyr8Cyanamid 154806 did not antagonize the response to baclofen (10 μM).
  5. We conclude that SRIF activates a K+ conductance in anterior cingulate pyramidal neurones via an action predominantly at sst2 receptors.
  相似文献   

18.
  1. The aim of this study was to determine the conditions under which the α2-adrenoceptor agonist UK14304 produces vasoconstriction in the porcine isolated ear artery.
  2. UK14304 (0.3 μM) produced a small contraction of porcine isolated ear arteries which was 7.8±3.3% of the response to 60 mM KC1. Similar sized contractions were obtained after precontraction with either 30 nM angiotensin II, or 0.1 μM U46619 (8.2±1.8% and 10.2±2.6% of 60 mM KC1 response, respectively). However, an enhanced α2-adrenoceptor response was uncovered if the tissue was precontracted with U46619, and relaxed back to baseline with 1–2 μM forskolin before the addition of UK14304 (46.9±9.6% of 60 mM KC1 response).
  3. The enhanced responses to UK14304 in the presence of U46619 and forskolin were not inhibited by the α1-adrenoceptor antagonist prazosin (0.1 μM), but were inhibited by the α2-adrenoceptor antagonist rauwolscine (1 μM), indicating that the enhanced responses were mediated via postjunctional α2-adrenoceptors.
  4. In the presence of 0.1 μM U46619 and 1 mM isobutylmethylxanthine (IBMX), 1 μM forskolin produced an increase in [3H]-cyclic AMP levels in porcine isolated ear arteries. Addition of 0.3 μM UK14304 prevented this increase.
  5. The enhanced UK14304 response was dependent upon the agent used to relax the tissue. After relaxation of ear arteries precontracted with 10 nM U46619 and relaxed with forskolin the UK14304 response was 46.9±9.6% of the 60 mM KC1 response, and after relaxation with sodium nitroprusside (SNP) the response was 24.8±3.3%. However, after relaxation of the tissue with levcromakalim the UK14304 response was only 8.2±1.7%, which was not different from the control response in the same tissues (12.2±5.6%). An enhanced contraction was also obtained after relaxation of the tissue with the cyclic AMP analogue dibutyryl cyclic AMP (23.2±1.3%) indicating that at least part of the enhanced response to UK14304 is independent of the ability of the agonist to inhibit cyclic AMP production.
  6. Relaxation of U46619 contracted ear arteries with SNP could be inhibited by the NO-sensitive guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) indicating that production of cyclic GMP is necessary for the relaxant effect of SNP. However, ODQ had no effect on the relaxation of tissue by forskolin, suggesting that this compound does not act via production of cyclic GMP. Biochemical studies showed that while forskolin increases the levels of cyclic AMP in the tissues, SNP had no effect on the levels of this cyclic nucleotide.
  7. In conclusion, enhanced contractions to the α2-adrenoceptor agonist UK14304 can be uncovered in porcine isolated ear arteries by precontracting the tissue with U46619, followed by relaxation back to baseline with forskolin, SNP or dibutyryl cyclic AMP before addition of UK14304. There was a greater contractile response to UK14304 after relaxation with forskolin than with SNP or dibutyryl cyclic AMP, suggesting that cyclic AMP-dependent and- independent mechanisms are involved in the enhancement of the UK14304 response.
  相似文献   

19.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

20.
  1. Angiotensin II (AII) and the endothelins (ET) are known to be potent trophic stimuli in various cells including cardiomyocytes. In order to characterize further these effects we studied, in neonatal rat ventricular cardiomyocytes, the effects of several endothelin-receptor antagonists and the AT1-receptor antagonist losartan on AII- and endothelin-induced inositol phosphate (IP)-formation (assessed as accumulation of total [3H]-IPs in myo-[3H]-inositol prelabelled cells) and increase in rate of protein synthesis (assessed as [3H]-phenylalanine incorporation).
  2. Endothelin (10 pM–1 μM) concentration-dependently increased IP-formation (max. increase at 100 nM ET-1: 130±14% above basal, n=25) and [3H]-phenylalanine incorporation (max. increase at 1 μM: 52±4% above basal, n=16) with an order of potency: ET-1>>ET-3. Both effects were antagonized by the ETA/ETB-receptor antagonist bosentan and the ETA-receptor antagonist BQ-123, but not affected by the ETB-receptor antagonist IRL 1038 and the AT1-receptor antagonist losartan.
  3. Pretreatment of the cells with 500 ng ml−1 pertussis toxin (PTX) overnight that completely inactivated PTX-sensitive G-proteins did not attenuate but rather enhance ET-1-induced IP-formation. On the other hand, in PTX-pretreated cardiomyocytes ET-1-induced [3H]-phenylalanine incorporation was decreased by 39±5% (n=5).
  4. AII (1 nM–1 μM) concentration-dependently increased IP-formation (max. increase at 1 μM: 42±7% above basal, n=16) and [3H]-phenylalanine incorporation (max. increase at 1 μM: 29±2%, n=9). These effects were antagonized by losartan, but they were also antagonized by bosentan and BQ-123.
  5. In well-defined cultures of cardiomyocytes (not contaminated with non-myocyte cells) AII failed to increase [3H]-phenylalanine incorporation; addition of non-myocyte cells to the cardiomyocytes restored AII-induced increase in [3H]-phenylalanine incorporation.
  6. We conclude that, in rat neonatal ventricular cardiomyocytes, (a) the ET-1-induced increase in rate of protein synthesis (through ETA-receptor stimulation) involves at least two signalling pathways: one via a PTX-insensitive G-protein coupled to IP-formation, and the other one via a PTX-sensitive G-protein, and (b) the trophic effects of AII are brought about via local ET-1 secretion upon AT1-receptor stimulation in neonatal rat ventricular non-myocyte cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号