首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
朱常宝  程勇  高强 《计算机科学》2016,43(Z6):46-50
近年来,深度学习在图像、语音、视频等非结构化数据中获得了成功的应用,已成为机器学习和数据挖掘领域的研究热点。作为一种监督学习模型,成功的深度学习应用往往要求较大的高质量的训练集。基于此,研究了多个受限波尔兹曼机组成的深度信念网络,结合半监督学习的思想,使用较小的训练集提高深度网络模型的分类准确性。分别采用了Knn,SVM和pHash 3种方法来学习非标示数据集,实验结果表明半监督深度信念网络比传统多层受限波尔兹曼机在图像分类准确率方面提高了约3%。  相似文献   

2.
单幅图像深度估计是计算机视觉中的经典问题,对场景的3维重建、增强现实中的遮挡及光照处理具有重要意义。本文回顾了单幅图像深度估计技术的相关工作,介绍了单幅图像深度估计常用的数据集及模型方法。根据场景类型的不同,数据集可分为室内数据集、室外数据集与虚拟场景数据集。按照数学模型的不同,单目深度估计方法可分为基于传统机器学习的方法与基于深度学习的方法。基于传统机器学习的单目深度估计方法一般使用马尔可夫随机场(MRF)或条件随机场(CRF)对深度关系进行建模,在最大后验概率框架下,通过能量函数最小化求解深度。依据模型是否包含参数,该方法又可进一步分为参数学习方法与非参数学习方法,前者假定模型包含未知参数,训练过程即是对未知参数进行求解;后者使用现有的数据集进行相似性检索推测深度,不需要通过学习来获得参数。对于基于深度学习的单目深度估计方法本文详细阐述了国内外研究现状及优缺点,同时依据不同的分类标准,自底向上逐层级将其归类。第1层级为仅预测深度的单任务方法与同时预测深度及语义等信息的多任务方法。图片的深度和语义等信息关联密切,因此有部分工作研究多任务的联合预测方法。第2层级为绝对深度预测方法与相对深度关系预测方法。绝对深度是指场景中的物体到摄像机的实际距离,而相对深度关注图片中物体的相对远近关系。给定任意图片,人的视觉更擅于判断场景中物体的相对远近关系。第3层级包含有监督回归方法、有监督分类方法及无监督方法。对于单张图片深度估计任务,大部分工作都关注绝对深度的预测,而早期的大多数方法采用有监督回归模型,即模型训练数据带有标签,且对连续的深度值进行回归拟合。考虑到场景由远及近的特性,也有用分类的思想解决深度估计问题的方法。有监督学习方法要求每幅RGB图像都有其对应的深度标签,而深度标签的采集通常需要深度相机或激光雷达,前者范围受限,后者成本昂贵。而且采集的原始深度标签通常是一些稀疏的点,不能与原图很好地匹配。因此不用深度标签的无监督估计方法是研究趋势,其基本思路是利用左右视图,结合对极几何与自动编码机的思想求解深度。  相似文献   

3.
在疾病诊断、手术引导及放射性治疗等图像辅助诊疗场景中,将不同时间、不同模态或不同设备的图像通过合理的空间变换进行配准是必要的处理流程之一。随着深度学习的快速发展,基于深度学习的医学图像配准研究以其耗时短、精度高的优势吸引了研究者的广泛关注。本文全面整理了2015—2019年深度医学图像配准方向的论文,系统地分析了深度医学图像配准领域的最新研究进展,展现了深度配准算法研究从迭代优化到一步预测、从有监督学习到无监督学习的总体发展趋势。具体来说,本文在界定深度医学图像配准问题和介绍配准研究分类方法的基础上,以相关算法的网络训练过程中所使用的监督信息多少作为分类标准,将深度医学图像配准划分为全监督、双监督与弱监督、无监督医学图像配准方法。全监督配准方法通过采用随机变换、传统算法和模型生成等方式获取近似的金标准作为监督信息;双监督、无监督配准方法通过引入图像相似度损失、标签相似度损失等其他监督信息以降低对金标准的依赖;无监督配准方法则完全消除对标注数据的需要,仅使用图像相似度损失和正则化损失监督网络训练。目前,无监督医学图像算法已经成为医学图像配准领域的研究重点,在无需获得代价高昂的标注信息下就能够取得与有监督和传统方法相当甚至更高的配准精度。在此基础上,本文进一步讨论了医学图像配准研究后续可能的4个未来挑战,希望能够为更高精度、更高效率的深度医学图像配准算法的研究提供方向,并推动深度医学图像配准技术在临床诊疗中落地应用。  相似文献   

4.
利用深度迁移学习算法,将深度模型迁移至小批量数据中进行使用,解决过拟合和对数据标签依赖性强的问题。首先,将已经训练好的模型应用在相似图像分类任务中,提高模型效率;其次利用微调策略,对深度学习网络全连接层进行调整,丢弃部分神经元以降低过拟合的发生,提高模型准确性;最后使用DogsVSCats数据集进行测试。实验结果表明,深度迁移学习算法在小批量样本数据中具有更高的准确性。  相似文献   

5.
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。  相似文献   

6.
深度元学习是解决小样本分类问题的流行范式。对近年来基于深度元学习的小样本图像分类算法进行了详细综述。从问题的描述出发对基于深度元学习的小样本图像分类算法进行概括,并介绍了常用小样本图像分类数据集及评价准则;分别从基于模型的深度元学习方法、基于优化的深度元学习方法以及基于度量的深度元学习方法三个方面对其中的典型模型以及最新研究进展进行详细阐述。最后,给出了现有算法在常用公开数据集上的性能表现,总结了该课题中的研究热点,并讨论了未来的研究方向。  相似文献   

7.
文本分类作为自然语言处理中一个基本任务,在20世纪50年代就已经对其算法进行了研究,现在单标签文本分类算法已经趋向成熟,但是对于多标签文本分类的研究还有很大的提升空间。介绍了多标签文本分类的基本概念以及基本流程,包括数据集获取、文本预处理、模型训练和预测结果。介绍了多标签文本分类的方法。这些方法主要分为两大类:传统机器学习方法和基于深度学习的方法。传统机器学习方法主要包括问题转换方法和算法自适应方法。基于深度学习的方法是利用各种神经网络模型来处理多标签文本分类问题,根据模型结构,将其分为基于CNN结构、基于RNN结构和基于Transfomer结构的多标签文本分类方法。对多标签文本分类常用的数据集进行了梳理总结。对未来的发展趋势进行了分析与展望。  相似文献   

8.
随着网络上图像和视频数据的快速增长,传统图像检索方法已难以高效处理海量数据。在面向大规模图像检索时,特征哈希与深度学习结合的深度哈希技术已成为发展趋势,为全面认识和理解深度哈希图像检索方法,本文对其进行梳理和综述。根据是否使用标签信息将深度哈希方法分为无监督、半监督和监督深度哈希方法,根据无监督和半监督深度哈希方法的主要研究点进一步分为基于卷积神经网络(convolutional neural networks,CNN)和基于生成对抗网络(generative adversarial networks,GAN)的无监督/半监督深度哈希方法,根据数据标签信息差异将监督深度哈希方法进一步分为基于三元组和基于成对监督信息的深度哈希方法,根据各种方法使用损失函数的不同对每类方法中一些经典方法的原理及特性进行介绍,对各种方法的优缺点进行分析。通过分析和比较各种深度哈希方法在CIFAR-10和NUS-WIDE数据集上的检索性能,以及深度哈希算法在西安邮电大学图像与信息处理研究所(Center for Image and Information Processing,CⅡP)自建的两个特色数据库上的测试结果,对基于深度哈希的检索技术进行总结,分析了深度哈希的检索技术未来的发展前景。监督深度哈希的图像检索方法虽然取得了较高的检索精度。但由于监督深度哈希方法高度依赖数据标签,无监督深度哈希技术更加受到关注。基于深度哈希技术进行图像检索是实现大规模图像数据高效检索的有效方法,但存在亟待攻克的技术难点。针对实际应用需求,关于无监督深度哈希算法的研究仍需要更多关注。  相似文献   

9.
近年来,栈式自编码网络(stacked auto-encoder,SAE)在大规模数据集上表现出优异的图像分类性能。相对于其他图像分类方法中手工设计的低级特征,SAE的成功归因于深度网络能够学习到丰富的中级图像特征。然而,估计上百万个网络参数需要非常庞大的带标签的图像样本数据集。这样的性质阻止了SAE在小规模训练数据上的许多应用。在这篇文章中,提出的算法展示如何将SAE在大规模数据集上学习到的图像表示有效地迁移到只有有限训练数据的视觉识别任务中。实验部分设计了一个方法来复用在MNIST数据集上训练得到的隐藏层,以此计算在MNIST-variations数据集上的中级图像表示。实验结果展示了尽管两个数据集之间存在差异,但是被迁移的图像特征能够使得模型的分类性能得到极大的提升。  相似文献   

10.
一种基于胶质细胞链的改进深度信念网络模型   总被引:2,自引:0,他引:2  
深度信念网络(Deep belief network, DBN) 是一种从无标签数据学习特征的多层结构模型. 在同一层单元间缺少连接, 导致数据中的深度关联特征难以提取. 受到人脑中胶质神经细胞机制的启示, 提出一种基于胶质细胞链的改进 DBN 模型及其学习算法, 以提取更多数据信息. 在标准图像分类数据集上的实验结果表明, 与其他几种模型相比, 本文提出的改进 DBN 模型可以提取更为优秀的图像特征, 提高分类准确率.  相似文献   

11.
在实际应用中,为分类模型提供大量的人工标签越来越困难,因此,近几年基于半监督的图像分类问题获得了越来越多的关注.而大量实验表明,在生成对抗网络(Generative adversarial network,GANs)的训练过程中,引入少量的标签数据能获得更好的分类效果,但在该类模型的框架中并没有考虑用于提取图像特征的结构,为了进一步利用其模型的学习能力,本文提出一种新的半监督分类模型.该模型在原生成对抗网络模型中添加了一个编码器结构,用于直接提取图像特征,并构造了一种新的半监督训练方式,获得了突出的分类效果.本模型分别在标准的手写体识别数据库MNIST、街牌号数据库SVHN和自然图像数据库CIFAR-10上完成了数值实验,并与其他半监督模型进行了对比,结果表明本文所提模型在使用少量带标数据情况下得到了更高的分类精度.  相似文献   

12.
目的 生物医学文献中的图像经常是包含多种模式的复合图像,自动标注其类别,将有助于提高图像检索的性能,辅助医学研究或教学。方法 融合图像内容和说明文本两种模态的信息,分别搭建基于深度卷积神经网络的多标签分类模型。视觉分类模型借用自然图像和单标签的生物医学简单图像,实现异质迁移学习和同质迁移学习,捕获通用领域的一般特征和生物医学领域的专有特征,而文本分类模型利用生物医学简单图像的说明文本,实现同质迁移学习。然后,采用分段式融合策略,结合两种模态模型输出的结果,识别多标签医学图像的相关模式。结果 本文提出的跨模态多标签分类算法,在ImageCLEF2016生物医学图像多标签分类任务数据集上展开实验。基于图像内容的混合迁移学习方法,比仅采用异质迁移学习的方法,具有更低的汉明损失和更高的宏平均F1值。文本分类模型引入同质迁移学习后,能够明显提高标签的分类性能。最后,融合两种模态的多标签分类模型,获得与评测任务最佳成绩相近的汉明损失,而宏平均F1值从0.320上升到0.488,提高了约52.5%。结论 实验结果表明,跨模态生物医学图像多标签分类算法,融合图像内容和说明文本,引入同质和异质数据进行迁移学习,缓解生物医学图像领域标注数据规模小且标签分布不均衡的问题,能够更有效地识别复合医学图像中的模式信息,进而提高图像检索性能。  相似文献   

13.
图像的自动标注是图像检索领域一项基础而又富有挑战性的任务。深度学习算法自提出以来在图像和文本识别领域取得了巨大的成功,是一种解决"语义鸿沟"问题的有效方法。图像标注问题可以分解为基于图像与标签相关关系的基本图像标注和基于标注词汇共生关系的标注改善两个过程。文中将基本图像标注问题视为一个多标记学习问题,图像的标签先验知识作为深度神经网络的监督信息。在得到基本标注词汇的基础上,利用原始图像标签词汇的依赖关系与先验分布改善了图像的标注结果。最后将所提出的改进的深度学习模型应用于Corel和ESP图像数据集,验证了该模型框架及所提出的解决方案的有效性。  相似文献   

14.
随着互联网的发展,恶意代码呈现海量化与多态化的趋势,恶意代码家族分类是网络空间安全面临的挑战之一。将半监督生成对抗网络与深度卷积学习网络相结合,构建半监督深度卷积生成对抗网络,提出了一种恶意代码家族分类模型,通过恶意代码家族特征分析,对恶意代码进行特征提取,转化为一维灰度图像;然后基于一维卷积神经网络1D-CNN,构建半监督生成对抗网络SGAN,形成恶意代码家族分类模型SGAN-CNN。从特征提取优化、半监督生成对抗训练算法优化等方面进行恶意代码家族分类能力提升。为了验证SGAN-CNN模型的分类效果,在Microsoft Malware Classification Challenge数据集上进行实验。5折交叉验证测试显示,本文提出的模型在样本标注标签占80%的情况下,分类的平均准确率达到98.81%;在样本标注标签仅有20%的情况下,分类的平均准确率达到98.01%,取得了较好的分类效果。在小样本数量情况下,也能取得不错的分类准确率。  相似文献   

15.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度图像分类的研究背景出发,介绍了细粒度图像分类的难点和研究意义.其次,从基于强监督和弱监督两个角度,综述了基于深度学习的细粒度图像分类算法的研究进展,并介绍了多种典型的分类性能优秀的算法.此外,进一步论述了目前关于YOLO、多尺度CNN和生成对抗网络(GAN)等前沿深度学习模型在细粒度图像识别方面的应用,并且对比了最新的相关细粒度图像的数据增强方法的分类效果以及在复杂场景下不同类型的细粒度识别方法的性能特点分析.最后,通过对算法的分类性能进行对比和总结,探讨了未来发展方向和面临的挑战.  相似文献   

16.
随着网络上服装图片数量的快速增长,对于大量的服装进行分类的需求与日俱增.传统的使用手工进行服装图像的语义属性标注并不能完全的表达服装图像中的丰富信息,并且传统的手工设计的特征已经不能满足现实的精度和速度的需求.近年来,深度学习已经应用到计算机视觉方方面面,为基于深度学习的服装分类识别技术奠定了坚实的基础.本文根据已有的数据集DeepFashion构建了三个新的子数据集,进行分类训练的deepfashionkid数据集和进行Faster R-CNN训练的deepfashionVoc数据集和进行Mask R-CNN训练的deepfashionMask数据集.使用deepfashionkid数据集在VGG16上进行预训练得到clothNet模型,进而改进Faster R-CNN的损失函数.并且各自对比了这两种算法使用clothNet预训练的模型与不使用的区别.另外,本文了采用一种新的类似嫁接学习的预训练策略.实验表明,这些训练技巧对于检测精度的提高具有一定的帮助.  相似文献   

17.
多标签分类是指在一个样本中可能会有多个标签同时存在的分类问题,目前已被广泛应用于文本分类、图像分类、音乐及视频分类等领域。与传统的单标签分类问题不同,由于标签之间可能存在相关性或者依赖关系,多标签分类问题变得更加复杂。近年来,深度学习技术发展迅猛,结合深度学习的多标签分类方法逐渐成为研究热点。因此,从传统的和基于深度学习的角度对多标签分类方法进行了总结,分析了每一种方法的关键思想、代表性模型和优缺点。在传统的多标签分类方法中,分别介绍了问题转换方法和算法自适应方法。在基于深度学习的多标签分类方法中,特别是对最新的基于Transformer的多标签分类方法进行了综述,该方法目前已成为解决多标签分类问题的主流方法之一。此外,介绍了来自不同领域的多标签分类数据集,并简要分析了多标签分类的15个评价指标。最后,从多模态数据多标签分类、基于提示学习的多标签分类和不平衡数据多标签分类三方面对未来工作进行了展望,以期进一步推动多标签分类的发展和应用。  相似文献   

18.
针对获得训练数据集代价高昂问题,提出了一种用于图片显著性检测的弱监督新方法,在训练网络模型时仅使用图片级标签。方法分为两个阶段,在第一阶段,根据图片级标签训练分类模型,获得前景推断图;在第二阶段,对原图片进行超像素块处理,并与阶段一得到的前景推断图进行融合,从而细化显著对象边界。算法使用了现有的大型训练集和图像级标签,未使用像素级标签,从而减少了注释的工作量。在四个公共基准数据集上的实验结果表明,性能明显优于无监督的模型,与全监督模型相比也具有一定的优越性。  相似文献   

19.
目前深度学习在医学图像分析领域取得的良好表现大多取决于高质量带标注的数据集, 但是医学图像由于其专业性和复杂性, 数据集的标注工作往往需要耗费巨大的成本. 本文针对这一问题设计了一种基于深度主动学习的半自动标注系统, 该系统通过主动学习算法减少训练深度学习标注模型所需的标注样本数量, 训练完成后的标注模型可以用于剩余数据集的标注工作. 系统基于Web应用构建, 无需安装且能跨平台访问, 便于用户完成标注工作.  相似文献   

20.
基于深度学习的鱼类分类算法研究   总被引:1,自引:0,他引:1  
回顾近年来国内外对鱼类分类的研究进展,指出传统方法存在的缺陷。深度学习是目前图像分类的主流方法。研究基于卷积神经网络CNN(Convolutional Neural Network)的鱼类分类模型,并以该模型为基础,进一步提出利用迁移学习,以预训练网络的特征结合SVM算法(Pre CNN+SVM)的混合分类模型。实验以Fish4-Knowledge(F4 K)作为数据集,使用Tensor Flow训练网络模型。实验结果表明,利用Pre CNN+SVM算法,取得了98.6%的准确率,较传统方法有显著提高。对于小规模数据集,有效解决了需要人工提取特征的不可迁移性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号