首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 490 毫秒
1.
This study's objective is to assess the risk of asbestos‐related disease being contracted by past users of cosmetic talcum powder.  To our knowledge, no risk assessment studies using exposure data from historical exposures or chamber simulations have been published. We conducted activity‐based sampling with cosmetic talcum powder samples from five opened and previously used containers that are believed to have been first manufactured and sold in the 1960s and 1970s.  These samples had been subject to conflicting claims of asbestos content; samples with the highest claimed asbestos content were tested.  The tests were conducted in simulated‐bathroom controlled chambers with volunteers who were talc users.  Air sampling filters were prepared by direct preparation techniques and analyzed by phase contrast microscopy (PCM), transmission electron microscopy (TEM) with energy‐dispersive x‐ray (EDX) spectra, and selective area diffraction (SAED).  TEM analysis for asbestos resulted in no confirmed asbestos fibers and only a single fiber classified as “ambiguous.”  Hypothetical treatment of this fiber as if it were asbestos yields a risk of 9.6 × 10?7 (under one in one million) for a lifetime user of this cosmetic talcum powder.  The exposure levels associated with these results range from zero to levels far below those identified in the epidemiology literature as posing a risk for asbestos‐related disease, and substantially below published historical environmental background levels.  The approaches used for this study have potential application to exposure evaluations of other talc or asbestos‐containing materials and consumer products.  相似文献   

2.
Our reconstructed historical work scenarios incorporating a vintage 1950s locomotive can assist in better understanding the historical asbestos exposures associated with past maintenance and repairs and fill a literature data gap. Air sampling data collected during the exposure scenarios and analyzed by NIOSH 7400 (PCM) and 7402 (PCME) methodologies show personal breathing zone asbestiform fiber exposures were below the current OSHA exposure limits for the eight‐hour TWA permissible exposure limit (PEL) of 0.1 f/cc (range <0.007–0.064 PCME f/cc) and the 30‐minute short‐term excursion limit (EL) of 1.0 f/cc (range <0.045–0.32 PCME f/cc) and orders of magnitude below historic OSHA PEL and ACGIH TLVs. Bayesian decision analysis (BDA) results demonstrate that the 95th percentile point estimate falls into an AIHA exposure category 3 or 4 as compared to the current PEL and category 1 when compared to the historic PEL. BDA results demonstrate that bystander exposures would be classified as category 0. Our findings were also significantly below the published calcium magnesium insulations exposure range of 2.5 to 7.5 f/cc reported for historic work activities of pipefitters, mechanics, and boilermakers. Diesel‐electric locomotive pipe systems were typically insulated with a woven tape lagging that may have been chrysotile asbestos and handled, removed, and reinstalled during repair and maintenance activities. We reconstructed historical work scenarios containing asbestos woven tape pipe lagging that have not been characterized in the published literature. The historical work scenarios were conducted by a retired railroad pipefitter with 37 years of experience working with materials and locomotives.  相似文献   

3.
Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos‐containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8‐h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do‐it‐yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi‐empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8‐h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls.  相似文献   

4.
Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay‐in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight‐hour TWA concentrations and one‐year exposures (a one‐year dose equivalent) to asbestos fibers (asbestos f/cc‐years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do‐it‐yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight‐hour TWAs and annual exposures (dose). The eight‐hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as “highly controlled” for maintenance workers and “well controlled” for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos‐containing building material commonly encountered in construction trades.  相似文献   

5.
The awareness of potential risks emerging from the use of chemicals in all parts of daily life has increased the need for risk assessments that are able to cover a high number of exposure situations and thereby ensure the safety of workers and consumers. In the European Union (EU), the practice of risk assessments for chemicals is laid down in a Technical Guidance Document; it is designed to consider environmental and human occupational and residential exposure. Almost 70 EU risk assessment reports (RARs) have been finalized for high-production-volume chemicals during the last decade. In the present study, we analyze the assessment of occupational and consumer exposure to trichloroethylene and phthalates presented in six EU RARs. Exposure scenarios in these six RARs were compared to scenarios used in applications of the scenario-based risk assessment approach to the same set of chemicals. We find that scenarios used in the selected EU RARs to represent typical exposure situations in occupational or private use of chemicals and products do not necessarily represent worst-case conditions. This can be due to the use of outdated information on technical equipment and conditions in workplaces or omission of pathways that can cause consumer exposure. Considering the need for exposure and risk assessments under the new chemicals legislation of the EU, we suggest that a transparent process of collecting data on exposure situations and of generating representative exposure scenarios is implemented to improve the accuracy of risk assessments. Also, the data sets used to assess human exposure should be harmonized, summarized in a transparent fashion, and made accessible for all risk assessors and the public.  相似文献   

6.
Upperbound lifetime excess cancer risks were calculated for activities associated with asbestos abatement using a risk assessment framework developed for EPA's Superfund program. It was found that removals were associated with cancer risks to workers which were often greater than the commonly accepted cancer risk of 1 x 10(-6), although lower than occupational exposure limits associated with risks of 1 x 10(-3). Removals had little effect in reducing risk to school populations. Risks to teachers and students in school buildings containing asbestos were approximately the same as risks associated with exposure to ambient asbestos by the general public and were below the levels typically of concern to regulatory agencies. During abatement, however, there were increased risks to both workers and nearby individuals. Careless, everyday building maintenance generated the greatest risk to workers followed by removals and encapsulation. If asbestos abatement was judged by the risk criteria applied to EPA's Superfund program, the no-action alternative would likely be selected in preference to removal in a majority of cases. These conclusions should only be interpreted within the context of an overall asbestos risk management program, which includes consideration of specific fiber types and sizes, sampling and analytical limitations, physical condition of asbestos-containing material, episodic peak exposures, and the number of people potentially exposed.  相似文献   

7.
The mesothelioma epidemic in the United States, which peaked during the 2000–2004 period, can be traced to high‐level asbestos exposures experienced by males in occupational settings prior to the full recognition of the disease‐causing potential of asbestos and the establishment of enforceable asbestos exposure limits by the Occupational Safety and Health Administration (OSHA) in 1971. Many individuals diagnosed with mesothelioma where asbestos has been identified as a contributing cause of the disease have filed claims seeking compensation from asbestos settlement trusts or through the court system. An individual with mesothelioma typically has been exposed to asbestos in more than one setting and from more than one asbestos product. Apportioning risk for mesothelioma among contributing factors is an ongoing problem faced by occupational disease compensation boards, juries, parties responsible for paying damages, and currently by the U.S. Senate in its efforts to formulate a bill establishing an asbestos settlement trust. In this article we address the following question: If an individual with mesothelioma where asbestos has been identified as a contributing cause were to be compensated for his or her disease, how should that compensation be apportioned among those responsible for the asbestos exposures? For the purposes of apportionment, we assume that asbestos is the only cause of mesothelioma and that every asbestos exposure contributes, albeit differentially, to the risk. We use an extension of the mesothelioma risk model initially proposed in the early 1980s to quantify the contribution to risk of each exposure as a percentage of the total risk. The percentage for each specific discrete asbestos exposure depends on the start and end dates, the intensity, and the asbestos fiber type for the exposure. We provide justification for the use of the mesothelioma risk model for apportioning risk and discuss how to assess uncertainty associated with its application.  相似文献   

8.
Based on a variety of maternal occupational and residential inhalation exposure scenarios, estimates of infant exposure to the dry-cleaning solvent tetrachlorothylene (perchloroethylene, PCE) in breastmilk were made. Physiologically based pharmacokinetic (PBPK) modeling indicates that infants may be exposed to elevated levels of PCE in breastmilk due to their mothers' inhalation of PCE. The PBPK-predicted breastmilk PCE concentrations agree very well with measured concentrations, where available. Based on this analysis, infants may be exposed to this workplace chemical via breastmilk at doses corresponding to rather high levels of risk. Predicted breastmilk doses provide the infant with little margin of exposure to doses associated with adverse health effects. In addition, the estimated increased cancer risks associated with these infant exposures are large under certain exposure scenarios. The actual concentrations of PCE in breastmilk of exposed mothers can only be known with certainty if monitoring is conducted. Due to the widespread exposure potential, monitoring studies should be undertaken so that the appropriate risk management alternatives can be better evaluated.  相似文献   

9.
Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano‐functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano‐functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo‐catalytic exterior paint (nano‐scale TiO2), antimicrobial food packaging (nano‐scale Ag), and particulate‐reducing diesel fuel additives (nano‐scale CeO2). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure‐ and risk‐ranking methods may be redefined on a quantitative basis.  相似文献   

10.
In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose‐response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk reductions are less different for scenarios modeling the implementation of control measures. For control measures affecting the Campylobacter prevalence, the relative risk is proportional irrespective of the CPM used. However, for control measures affecting the concentration the CPMs show some difference in the estimated relative risk. This difference is largest for scenarios where the aim is to remove the highly contaminated portion from human exposure. Given these results, we conclude that for many purposes it is not necessary to develop a new detailed CPM for each new QMRA. However, more observational data on consumer food handling practices and their impact on microbial transfer and survival are needed to generalize this conclusion.  相似文献   

11.
The extensive data from the Blair et al.((1)) epidemiology study of occupational acrylonitrile exposure among 25460 workers in eight plants in the United States provide an excellent opportunity to update quantitative risk assessments for this widely used commodity chemical. We employ the semiparametric Cox relative risk (RR) regression model with a cumulative exposure metric to model cause-specific mortality from lung cancer and all other causes. The separately estimated cause-specific cumulative hazards are then combined to provide an overall estimate of age-specific mortality risk. Age-specific estimates of the additional risk of lung cancer mortality associated with several plausible occupational exposure scenarios are obtained. For age 70, these estimates are all markedly lower than those generated with the cancer potency estimate provided in the USEPA acrylonitrile risk assessment.((2)) This result is consistent with the failure of recent occupational studies to confirm elevated lung cancer mortality among acrylonitrile-exposed workers as was originally reported by O'Berg,((3)) and it calls attention to the importance of using high-quality epidemiology data in the risk assessment process.  相似文献   

12.
13.
We review approaches for characterizing “peak” exposures in epidemiologic studies and methods for incorporating peak exposure metrics in dose–response assessments that contribute to risk assessment. The focus was on potential etiologic relations between environmental chemical exposures and cancer risks. We searched the epidemiologic literature on environmental chemicals classified as carcinogens in which cancer risks were described in relation to “peak” exposures. These articles were evaluated to identify some of the challenges associated with defining and describing cancer risks in relation to peak exposures. We found that definitions of peak exposure varied considerably across studies. Of nine chemical agents included in our review of peak exposure, six had epidemiologic data used by the U.S. Environmental Protection Agency (US EPA) in dose–response assessments to derive inhalation unit risk values. These were benzene, formaldehyde, styrene, trichloroethylene, acrylonitrile, and ethylene oxide. All derived unit risks relied on cumulative exposure for dose–response estimation and none, to our knowledge, considered peak exposure metrics. This is not surprising, given the historical linear no‐threshold default model (generally based on cumulative exposure) used in regulatory risk assessments. With newly proposed US EPA rule language, fuller consideration of alternative exposure and dose–response metrics will be supported. “Peak” exposure has not been consistently defined and rarely has been evaluated in epidemiologic studies of cancer risks. We recommend developing uniform definitions of “peak” exposure to facilitate fuller evaluation of dose response for environmental chemicals and cancer risks, especially where mechanistic understanding indicates that the dose response is unlikely linear and that short‐term high‐intensity exposures increase risk.  相似文献   

14.
Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure scenarios, skin surface loading and unloading rates, and contaminant movement through the epidermis. In this article we (1) develop and test a finite-difference model of contaminant transport through the epidermis; (2) develop archetypal exposure scenarios based on behavioral data to estimate characteristic loading and unloading rates; and (3) quantify 24-hour accumulation below the epidermis by applying a Monte Carlo simulation of these archetypal exposure scenarios. The numerical model, called Transient Transport through the epiDERMis (TTDERM), allows us to account for variable exposure times and time between exposures, temporal and spatial variations in skin and compound properties, and uncertainty in model parameters. Using TTDERM we investigate the use of a macro-activity parameter (cumulative contact time) for predicting daily (24-hour) integrated uptake of pesticides during complex exposure scenarios. For characteristic child behaviors and hand loading and unloading rates, we find that a power law represents the relationship between cumulative contact time and cumulative mass transport through the skin. With almost no loss of reliability, this simple relationship can be used in place of the more complex micro-activity simulations that require activity data on one- to five-minute intervals. The methods developed in this study can be used to guide dermal exposure model refinements and exposure measurement study design.  相似文献   

15.
Phthalic acid esters (phthalates) are used as plasticizers in numerous consumer products, commodities, and building materials. Consequently, phthalates are found in human residential and occupational environments in high concentrations, both in air and in dust. Phthalates are also ubiquitous food and environmental contaminants. An increasing number of studies sampling human urine reveal the ubiquitous phthalate exposure of consumers in industrialized countries. At the same time, recent toxicological studies have demonstrated the potential of the most important phthalates to disturb the human hormonal system and human sexual development and reproduction. Additionally, phthalates are suspected to trigger asthma and dermal diseases in children. To find the important sources of phthalates in Europeans, a scenario-based approach is applied here. Scenarios representing realistic exposure situations are generated to calculate the age-specific range in daily consumer exposure to eight phthalates. The scenarios demonstrate that exposure of infant and adult consumers is caused by different sources in many cases. Infant consumers experience significantly higher daily exposure to phthalates in relation to their body weight than older consumers. The use of consumer products and different indoor sources dominate the exposure to dimethyl, diethyl, benzylbutyl, diisononyl, and diisodecyl phthalates, whereas food has a major influence on the exposure to diisobutyl, dibutyl, and di-2-ethylhexyl phthalates. The scenario-based approach chosen in the present study provides a link between the knowledge on emission sources of phthalates and the concentrations of phthalate metabolites found in human urine.  相似文献   

16.
Asbestos lung cancer risks: comparison of animal and human extrapolations   总被引:1,自引:0,他引:1  
Using the most comprehensive inhalation study available, (Wagner, et al., 1974), the dose-response effects of the four major types of asbestos fibers (amosite, anthophyllite, crocidolite, and chrysotile: Canadian, Rhodesian) for lung cancer have been determined. From linear regression analysis of the animal data and five human epidemiology studies giving a wide range of risk estimates, slopes of the curves have been determined and lifetime risk estimates made. Projected risks for rats are presented with and without surface area (s.a.) conversion factors. On the basis of cumulative exposure, the geometric mean of the point estimates for the human studies (0.0146) is quite close to the geometric mean of the animal data (0.0179 without s.a.; 0.0122 with s.a. calculations). These values also match quite well if one of the studies (McDonald, et al.) is eliminated (geometric mean = 0.031) due to qualitatively different exposure considerations (mining and milling vs. industrial environments). Animal risks based on a concentration per day basis (assuming an average 70-year lifespan for humans) are below the lowest human estimate but within 5-6 fold (less) of the projected risk from nonsmoking asbestos workers (2.2 X 10(-3) using the Hammond et al. study.  相似文献   

17.
To assess the maximum possible impact of further government regulation of asbestos exposure, projections were made of the use of asbestos in nine product categories for the years 1985-2000. A life table risk assessment model was then developed to estimate the excess cases of cancer and lost person-years of life likely to occur among those occupationally and nonoccupationally exposed to the nine asbestos product categories manufactured in 1985-2000. These estimates were made under the assumption that government regulation remains at its 1985 level. Use of asbestos in the nine product categories was predicted to decline in all cases except for friction products. The risk assessment results show that, although the cancer risks from future exposure to asbestos are significantly less than those from past exposures, in the absence of more stringent regulations, a health risk remains.  相似文献   

18.
This study evaluates the dose-response relationship for inhalation exposure to hexavalent chromium [Cr(VI)] and lung cancer mortality for workers of a chromate production facility, and provides estimates of the carcinogenic potency. The data were analyzed using relative risk and additive risk dose-response models implemented with both Poisson and Cox regression. Potential confounding by birth cohort and smoking prevalence were also assessed. Lifetime cumulative exposure and highest monthly exposure were the dose metrics evaluated. The estimated lifetime additional risk of lung cancer mortality associated with 45 years of occupational exposure to 1 microg/m3 Cr(VI) (occupational exposure unit risk) was 0.00205 (90%CI: 0.00134, 0.00291) for the relative risk model and 0.00216 (90%CI: 0.00143, 0.00302) for the additive risk model assuming a linear dose response for cumulative exposure with a five-year lag. Extrapolating these findings to a continuous (e.g., environmental) exposure scenario yielded an environmental unit risk of 0.00978 (90%CI: 0.00640, 0.0138) for the relative risk model [e.g., a cancer slope factor of 34 (mg/kg-day)-1] and 0.0125 (90%CI: 0.00833, 0.0175) for the additive risk model. The relative risk model is preferred because it is more consistent with the expected trend for lung cancer risk with age. Based on statistical tests for exposure-related trend, there was no statistically significant increased lung cancer risk below lifetime cumulative occupational exposures of 1.0 mg-yr/m3, and no excess risk for workers whose highest average monthly exposure did not exceed the current Permissible Exposure Limit (52 microg/m3). It is acknowledged that this study had limited power to detect increases at these low exposure levels. These cancer potency estimates are comparable to those developed by U.S. regulatory agencies and should be useful for assessing the potential cancer hazard associated with inhaled Cr(VI).  相似文献   

19.
A probabilistic and interdisciplinary risk–benefit assessment (RBA) model integrating microbiological, nutritional, and chemical components was developed for infant milk, with the objective of predicting the health impact of different scenarios of consumption. Infant feeding is a particular concern of interest in RBA as breast milk and powder infant formula have both been associated with risks and benefits related to chemicals, bacteria, and nutrients, hence the model considers these three facets. Cronobacter sakazakii, dioxin‐like polychlorinated biphenyls (dl‐PCB), and docosahexaenoic acid (DHA) were three risk/benefit factors selected as key issues in microbiology, chemistry, and nutrition, respectively. The present model was probabilistic with variability and uncertainty separated using a second‐order Monte Carlo simulation process. In this study, advantages and limitations of undertaking probabilistic and interdisciplinary RBA are discussed. In particular, the probabilistic technique was found to be powerful in dealing with missing data and to translate assumptions into quantitative inputs while taking uncertainty into account. In addition, separation of variability and uncertainty strengthened the interpretation of the model outputs by enabling better consideration and distinction of natural heterogeneity from lack of knowledge. Interdisciplinary RBA is necessary to give more structured conclusions and avoid contradictory messages to policymakers and also to consumers, leading to more decisive food recommendations. This assessment provides a conceptual development of the RBA methodology and is a robust basis on which to build upon.  相似文献   

20.
We examined the relation between cancer mortality and time-dependent cumulative exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) estimated from a concentration- and age-dependent kinetic model of elimination, and we estimated incremental cancer risks at age 75. Data from the National Institute for Occupational Safety and Health study of 3,538 workers with occupational exposure to TCDD were analyzed using standardized mortality ratios and Cox regression procedures. Analyses adjusted for potential confounding by age, year of birth, and race and considered exposure lag periods of 0, 10, or 15 years. Other potential confounders including smoking and other occupational exposures were evaluated indirectly. To explore the influence of extreme values of cumulative TCDD ppt-years, we restricted the analysis to observations with exposure below the 95th percentile or used logarithmic (ln) transformed exposure values. We applied penalized smoothing splines to examine variation in the exposure-response relation across the exposure range. TCDD was not statistically significantly associated with cancer mortality using the full data set, regardless of the lag period. When we restricted the analysis to observations with exposure below the 95th percentile, TCDD was associated positively with cancer mortality, particularly when a 15-year lag was applied (untransformed exposure data: regression coefficient , standard error (s.e.) = 1.4 x 10(-6), p < 0.05; ln-transformed exposure data: , s.e. = 2.9 x 10(-2), p < 0.05). The estimated incremental lifetime risk of mortality at age 75 from all cancers was about 6 to more than 10 times lower than previous estimates derived from this cohort using exposure models that did not consider the age and concentration dependence of TCDD elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号