首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
预应力高性能混凝土梁中超细粉煤灰合理掺量研究   总被引:2,自引:1,他引:1  
对粉煤灰高性能混凝土的早期抗压强度、劈裂抗拉强度、早期弹性模量、钢筋握裹力、抗剪强度和徐变性能,超细粉煤灰的合理掺量和护筋性,高性能混凝土模型梁的疲劳性能等进行试验研究。结果表明:一定掺量的优质粉煤灰可改善混凝土的性能,降低结构的寿命周期成本;铁路预应力梁中超细粉煤灰(UFA)的推荐掺量为25%。6片32mC50超细粉煤灰高性能混凝土试验梁的静载试验结果表明,其各项性能指标满足铁路《桥规》要求。  相似文献   

2.
高性能混凝土梁长期变形性能试验研究   总被引:1,自引:0,他引:1  
以8根不同掺量的高性能粉煤灰混凝土梁的收缩、徐变试验为基础,研究了不同掺量高性能粉煤灰混凝土在荷载长期作用下的收缩、徐变性能及其上拱随时间的变化规律,探讨了温度、湿度等环境因素对不同掺量高性能粉煤灰混凝土收缩、徐变的影响。实验观测结果表明:高性能粉煤灰掺量20%~40%混凝土梁具有良好的工作性能和力学性能;与同强度的未掺高性能粉煤灰的梁相比,其后期强度和抗压弹性模量增大,收缩徐变减小,具有良好的社会和经济效益。  相似文献   

3.
大掺量粉煤灰高性能混凝土的试验研究   总被引:5,自引:0,他引:5  
探讨了中等强度大掺量粉煤灰高性能混凝土的工作性能、力学性能、变形性能以及耐久性能。在大量试验的基础上,对不同掺量粉煤灰高性能混凝土的坍落度损失、抗压强度、干缩以及耐久性等性能进行了全面地分析。研究表明,大掺量粉煤灰高性能混凝土在道路工程、大体积工程以及房建工程等方面有着广阔的应用前景。  相似文献   

4.
铁路超细粉煤灰预应力混凝土梁疲劳性能试验   总被引:2,自引:0,他引:2  
通过9组32m铁路预应力混凝土标准梁的缩尺模型,对掺用超细粉煤灰的预应力混凝土梁在重复荷载作用下的力学性能进行研究,探讨粉煤灰掺量,混凝土等级以及养护条件等因素对铁路桥梁粉煤灰预应力混凝土梁力学性能的影响.试验结果表明:经200万次重复加载后,模型梁静力及动力特性与加载前相比基本不变,超细粉煤灰的合理掺用对梁体疲劳性能没有不利影响,为铁路桥梁粉煤灰预应力混凝土设计参数的选取及应用提供技术支持.  相似文献   

5.
再生骨料混凝土配合比设计及改性研究   总被引:2,自引:1,他引:1  
采用正交试验设计方法对再生骨料混凝土(RAC)的配合比进行了试验设计,探讨了水胶比、再生骨料掺量以及超细粉煤灰(UFA)掺量等因素对再生骨料混凝土强度的影响规律;采用多元回归分析方法,建立了再生骨料混凝土强度与胶水比、再生骨料掺量及UFA掺量的经验公式。在此基础上,研究了粉煤灰单掺、粉煤灰与矿渣双掺时再生骨料混凝土强度和弹性模量的影响,对再生骨料混凝土抗压强度与抗折强度、劈拉强度的相关关系进行了回归分析。  相似文献   

6.
不同掺量高性能粉煤灰混凝土铁路桥梁试验研究   总被引:1,自引:0,他引:1  
以9组不同掺量高性能粉煤灰混凝土无粘结预应力模型梁的使用荷载试验和抗弯承载力试验为基础,研究高性能粉煤灰混凝土梁在重复荷载作用下的受力行为。研究结果表明:掺量为20%~40%的高性能粉煤灰混凝土梁在使用荷载作用下,200万次疲劳加载后,梁体仍处于弹性阶段,疲劳加载对位移影响很小;梁的基频在200万次疲劳加载范围以内基本保持不变,表明梁体的刚度基本不变;相同强度高性能粉煤灰混凝土模型梁的开裂荷载和极限荷载均随高性能粉煤灰掺量(20%~40%)的增加有所提高;掺加高性能粉煤灰能显著减小混凝土梁裂缝的间距、宽度、高度,抑制裂缝的扩展,对提高梁体的耐久性有重要意义。因此,掺高性能粉煤灰20%~40%的混凝土用于32 m铁路预应力简支梁是可行的。高性能粉煤灰混凝土梁的抗弯承载力按TB10002.3—99规范计算,具有足够的精度。  相似文献   

7.
研究了不同掺量粉煤灰对泡沫混凝土性能的影响,实验结果表明:在相同容重下,泡沫混凝土28 d抗压强度随着粉煤灰掺量的增加是呈上升趋势,粉煤灰掺量为30%时抗压强度最高,而且在设计容重越大的情况下强度受水灰比影响越小。而吸水率是随着粉煤灰掺量的增加而整体趋于下降,并且在设计容重为600 kg/m3,水胶比为0.42时,粉煤灰掺量为30%时,泡沫混凝土的吸水率最低。导热系数在粉煤灰掺量较小时,影响较小;当掺量为30%时,导热系数最小,仅为0.55 W/(m·K)。  相似文献   

8.
高掺量粉煤灰对高性能混凝土体积稳定性及耐久性的影响   总被引:2,自引:0,他引:2  
研究了粉煤灰在较高掺量时对混凝土收缩性能、抗碳化性能、抗氯离子渗透性能与抗冻性能的影响。试验发现:粉煤灰掺量在0~25%范围内,混凝土收缩随着粉煤灰掺量的增加而减少,但粉煤灰掺量超过20%后,收缩减少的幅度变小;当粉煤灰掺量高于30%时,混凝土的碳化速度迅速增加,抗碳化能力降低;掺加粉煤灰能大幅度降低混凝土的氯离子渗透性,且随着粉煤灰掺量的增大,混凝土的抗氯离子渗透性越高;从重量损失率的指标来看,粉煤灰掺量越大,其重量损失率越小,抗冻性能越好。  相似文献   

9.
粉煤灰高性能混凝土的试验研究   总被引:4,自引:1,他引:3  
李维  王献军 《铁道建筑》2008,(5):109-112
在大量试验的基础上,对不同掺量粉煤灰高性能混凝土的坍落度损失、抗压强度、干缩、抗渗性和抗冻性等性能进行了全面地分析.研究表明,大掺量粉煤灰高性能混凝土在大体积工程以及工业与民用建筑工程等方面有着广阔的应用前景.  相似文献   

10.
粉煤灰高性能混凝土在桥梁结构中的应用   总被引:1,自引:0,他引:1  
介绍粉煤灰的特性及其对混凝土性能的影响 ,通过大掺量粉煤灰高性能混凝土在滨州黄河公路大桥工程中的应用 ,着重对大掺量粉煤灰混凝土原材料的优选和混凝土使用性能两方面进行论述 ,表明大掺量粉煤灰混凝土应用前景广阔。  相似文献   

11.
高岩温低湿环境下铁路隧道混凝土耐久性研究   总被引:2,自引:2,他引:0  
依托在建铁路隧道工程,针对高岩温对隧道衬砌混凝土耐久性能的影响,通过试验室模拟现场高岩温、低湿度的施工环境,研究高岩温对纯水泥混凝土、单掺粉煤灰混凝土和双掺粉煤灰、矿粉混凝土耐久性能的影响规律,并从微观形貌方面分析高岩温对混凝土耐久性能的影响机理。结果表明:高温、低湿养护环境下,3种配合比的混凝土的耐久性能均随养护温度的升高而降低,抗氯离子渗透性能单掺粉煤灰混凝土最好,纯水泥混凝土最差;抗碳化性能基本相当;微观上分析单掺粉煤灰混凝土结构更密实、孔隙率更小。  相似文献   

12.
改良粗颗粒填料在寒区高速铁路路基中的应用研究   总被引:2,自引:2,他引:0  
高速铁路路基填料选用传统意义上平均冻胀率η≤1%且级配良好的非冻胀填料,目前高速铁路路基在寒季产生的实际冻胀量已超过规范规定15 mm的要求。针对寒区高速铁路路基冻胀问题,从填料改良方面开展研究,针对路基产生冻胀的主要位置,选取级配碎石为对象,以水泥、石灰、粉煤灰作为掺和料进行改良。通过室内试验,分析加入无机材料后填料渗透性和冻胀性的变化,对比加入3种掺和料的填料冻胀率,选取一种改良效果最为理想的材料,作为寒区高速铁路路基改良材料。研究结果表明:水泥、石灰以及粉煤灰的加入大幅度减少了水分从路基表面向基床内部的渗透,其中粉煤灰吸水能力较强,因此产生了较大的冻胀量,不适宜作为改良材料;水泥改良填料冻结时水分迁移量减少,冻胀量最小,说明相对石灰和粉煤灰,水泥最适合加入到级配碎石中,减小路基冻胀量。  相似文献   

13.
针对铁路系统运营特征对钢桥面保护层材料的耐久性等提出的特殊要求,结合正交异性钢桥面板及浇注式沥青混凝土的特性,通过对铁路铺装保护层使用特点分析,开展浇注式沥青混凝土与常用的聚合物水泥混凝土性能对比分析。试验结果表明:浇注式沥青混凝土保护层材料疲劳耐久性、密水性及协调变形能力具有明显优势;与聚合物水泥混凝土相比,疲劳寿命大幅度提升,密水性提高50%。  相似文献   

14.
曹乾桂 《铁道建筑》2022,(2):141-145
结合鲁南(兰考—日照)高速铁路曲阜东站路基工程实际需求和泡沫混凝土技术现状,通过室内外试验,对比了粉煤灰、铁尾矿微粉、耐碱短切玻璃纤维及制备工艺对泡沫混凝土力学性能、水化热、干缩变形等影响,提出了与工况相适应的绿色高性能泡沫混凝土配制关键技术,并进行了工程应用.结果表明:铁尾矿微粉、粉煤灰在泡沫混凝土中具有良好的级配填...  相似文献   

15.
针对广珠城际轨道交通工程容桂水道主桥(115+2×185+115)m大跨度预应力混凝土连续刚构,分析其在无砟轨道条件下的关键技术:研究C60高性能混凝土的配比、坍落度、抗侵蚀性、耐腐蚀性;按此配比,用从工地运来的材料(包括水泥、砂、石、粉煤灰、矿粉)制造试验梁,研究预应力混凝土梁的后期徐变特性及控制方法;在此基础上,提出在设计和施工两方面采取的针对性控制措施。  相似文献   

16.
矿物掺合料对道路混凝土耐磨性的影响及机理   总被引:3,自引:0,他引:3  
测试了粉煤灰和矿渣单掺及双掺混凝土在不同龄期时的磨耗,测试结果表明:掺30%粉煤灰混凝土3 d龄期时的磨耗较不掺粉煤灰的混凝土增加,但能够提高混凝土后期的耐磨性能;无论是在早期还是后期,矿渣的使用均使混凝土的磨耗增大;粉煤灰与矿渣双掺的情况下也能使混凝土的后期耐磨性得以改善;粉煤灰中存在大量的高强高弹玻璃微珠及在后期活性效应的发挥从而使混凝土的耐磨性能得到提高。单掺矿渣由于其颗粒强度低、耐磨性能差,混凝土的耐磨性能下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号