首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
生物质二次裂解制取氢气的研究   总被引:3,自引:0,他引:3  
采用生物质热解及二次裂解的方法制取富氢气体.通过对生物质热解产生的气液体成份进行二次裂解,实现热解组分中焦油等含氢化合物的深度转化,提高产品气体中氢气的含量,同时解决了热解产品气中焦油不易去除的难题,得到洁净的富氢气体.实验选用稻壳为原料,分析了热解温度和物料滞留时间等因素对热解气体成份的影响,比较了热解气体和二次裂解气体成份的变化,同时分析了水蒸汽、催化剂等因素对裂解气体成份的影响.实验结果表明,热解温度和物料滞留时间的增加提高了热解气体中氢气的含量,二次裂解、水蒸汽和催化剂的引入都能在一定程度上提高产品气中H2的含量.实验最终表明,氢气体积含量可达到60%以上.  相似文献   

2.
稻壳连续热解特性研究   总被引:5,自引:0,他引:5  
在自行研制的生物质连续热解反应装置上进行稻壳连续热解和二次裂解实验研究。随着稻壳热解温度的提高,炭产率降低,气体产率增加,液体产率先增加后减少;随着滞留时间的减少,炭产率、液体产率增加,气体产率减少。稻壳热解气以CO2和CO为主,且二者为竞争关系,热解温度提高,CO2产量降低,CH4、H2、C2H4、C2H6产量增加,CO的产率变化不大;滞留时间对热解气组分影响不大。二次裂解温度提高,裂解气中的H2、CH4、C2H4含量明显增加,二次裂解温度为800℃时,H2产率达到12%。稻壳500℃热解挥发物600℃二次裂解木醋液中醋酸含量高达49.44%,焦油中检测到的物质主要为丙酮和异丙醇。  相似文献   

3.
生物质热解气重整试验平台设计与试验   总被引:1,自引:0,他引:1  
针对热解气焦油含量高、热值低的问题,文章基于焦油催化裂解和热解气气化重整原理,提出了生物质热解气重整工艺路线,并设计、搭建了生物质热解气重整试验平台,该试验平台主要由热解、催化重整、产品收集、控制系统等组成。以玉米秸秆为原料,在该试验平台上开展了热解气重整试验,试验结果表明:在以石英砂作为惰性材料的条件(高温裂解)下,热解气产率为33.8%,焦油转化率为64.3%;在玉米秸秆炭催化裂解条件下,热解气产率为37.8%,焦油转化率72.6%;高温裂解和催化裂解条件下生成的热解气的热值均达到了17MJ/m3以上。热解气重整试验平台达到了设计目的,为热解气重整研究提供了理论支持和技术支撑。  相似文献   

4.
生物质中热值气化技术中试实验   总被引:9,自引:3,他引:9  
利用浙江大学热能工程研究所开发的一种新型生物质热解气化中试实验台研究了稻秆热解过程。通过对热解气组分和热值等的分析,研究热解温度、抽气方式等因素对热解气和热解过程的影响。针对目前有关稻秆热解气中焦油的研究数据较少的情况,实验中采用白云石为催化剂,在固定床反应器上对热解气中焦油的催化裂解进行了研究,焦油缩减效率可达80—90%,并提高了热解气品质。  相似文献   

5.
焦油一直是生物质热解技术发展的瓶颈。文中研究了快速外热式热解工艺对生物质热解产物的影响。研究表明:快速外热式热解工艺可以有效地避免常规热解过程中出现的原料夹生问题,缩短从加料到开始热解的时间,减少温度上升期间焦油的产生;由于热解温度高,速度快,大分子芳香族化合物发生二次热解,支链断裂生成小分子的烷、氢等物质,提高了热解气的产率和热值;焦油中CmHn等较大分子通过热解和重整的方式变成生物质气,降低了热解产物中焦油含量;热解过程中,由于生物质炭中的芳香族化合物分解成小分子的烷烃、烯烃等进入生物质燃气中,剩余的主要是固定碳,所以生物质炭的产率较低,其它物相与灰烬的相同。  相似文献   

6.
生物质热解是一种重要的热转化技术,同时也是生物质气化、燃烧与液化等热转化过程的初始阶段,因此生物质热解的研究具有很好的理论意义与应用前景。基于这样的背景,选用固定床反应器,以白松、花生壳和稻秸为生物质样品,对其慢速热解的各相产物、产率进行比较,然后对不同生物质的热解气体产物进行分析,最后深入考察碱金属催化剂(K2CO3)对于不同生物质催化裂解过程所产生的影响。结果表明,在相同慢速热解条件下,稻秸的制氢效果最为明显。在加入碱金属催化剂后,发现相较于白松和稻秸,K2CO3对于花生壳的催化制氢效果尤为显著。  相似文献   

7.
CaO催化裂解生物质气化焦油实验研究   总被引:4,自引:0,他引:4  
以谷壳气化发电产生焦油为研究对象,考查了CaO作为焦油裂解催化剂对其催化裂解的影响。实验研究结果表明:CaO作为焦油裂解催化剂可使焦油裂解率明显提高,在800℃时,其裂解率可由热裂解的28.66%提高到65.60%,焦油催化裂解后可使燃气成份中的H2、CO、CH4以及CO2含量提高。但焦油裂解过程中,其积炭率可达30.51%;扫描电镜显示:因焦油裂解积炭包裹CaO催化剂,易使其催化活性失效,同时由于积炭,使床层压降增加,给焦油催化裂解运行带来困难。  相似文献   

8.
以稻壳为试验原料,DHC-32为催化剂.高纯N2为载气,在管式炉中研究了热解温度和DHC-32催化剂对稻壳热解气化特性的影响.试验结果表明:稻壳热解气中H2,CO含量随热解温度升高而增加,CH4CO2含量随热解温度升高而呈下降趋势;添加DHC-32催化剂后,未改变H2,CO,CH4,CO2含量随热解温度的变化趋势,但对4种气体的相对含量有一定的影响;在试验温度范围内,添加10%DHC-32催化剂比3%DHC-32催化剂对稻壳热解气影响更大一些.  相似文献   

9.
选取稻壳和松木屑等生物质,按不同比例与两种煤化程度不同的烟煤进行混合,采用热重分析的方法,研究不同生物质与烟煤单独热解和共热解的特性,研究了在自制复合型镍基催化剂条件下烟煤和松木屑的共热解特性及催化剂对焦油成分的影响.研究表明:在该实验条件下,烟煤与生物质的热解不存在重叠,烟煤的最大热解量仅为生物质的1/3 ~1/2;生物质的添加在共热解过程中对烟煤的热解起到一定的促进作用,在原料比例为50∶50时,共热解的两个失重峰逐渐变为一个;在自制镍基催化剂条件下,共热解碳转化率提高3% ~17%,焦油得到充分裂解,极大提高了原料利用率.  相似文献   

10.
生物质炭催化裂解焦油的实验研究   总被引:1,自引:0,他引:1  
通过实验方法研究了生物质炭对生物质热解焦油的催化特性。通过分析焦油裂解率在催化剂及其重量、蒸汽加入量和加入方式、氮气流量等条件下的变化可知:在蒸汽条件下,生物质炭对焦油有显著的催化裂解效果,最高焦油转化率可达96.1%。通过对实验条件下裂解产物、裂解气体积分数的分析可知,生物质炭和蒸汽可以促进热解产物里面的可凝结相转化为不可凝结的气体,并且导致气体组分体积分数的变化。裂解气中氢气产量增加较快,最高可达裂解气体积的50.2%。  相似文献   

11.
运用热重-傅立叶红外光谱联用技术(TG-FTIR),以麦秸为对象,探讨催化与非催化条件下生物质的加压热解特性,分析研究热解压力、温度、催化剂种类对生物质热解主要析出产物的影响。通过热重TG和DTG曲线,获得相关热解特性参数及动力学参数,结果表明添加NiO和CaO的加压催化热解均促进麦秸热解反应进行,降低表观活化能,其中NiO对提高热解析出产率作用更显著。通过红外光谱对热解产物的分析表明,提高热解压力以及加入适当的催化剂NiO和CaO均有利于增加CO和CH_4的生成。而且热解压力增加提高了NiO和CaO的催化作用,其中添加NiO时,在800℃以上具有更好的催化作用,且提高压力更有利于促进CH_4的生成;而添加CaO时,提高热解压力有利于减少CO_2的生成。  相似文献   

12.
以SiO_2、CaO、牛粪灰以及K_2CO_3为催化剂,对湿牛粪进行热解气化制富氢气体的试验研究。结果表明,各催化剂对牛粪热裂解反应催化作用的强弱顺序依次为K_2CO_3牛粪灰CaOSiO_2。在催化反应过程中,SiO_2的催化方向是牛粪热解液化产焦油方向而非热解气化产热解气方向,CaO对牛粪热解产焦油和产热解气均具有较好的催化作用,牛粪灰的催化作用主要表现在焦炭与水蒸气的蒸汽重整反应上,而K_2CO_3主要表现在焦油的二次裂解与蒸汽重整反应上。从经济成本与催化效果角度综合考量,牛粪灰催化湿牛粪热解制取富氢气体具有良好的实际应用价值。  相似文献   

13.
通过制备二甲醚合成气的生物质慢速热解气化实验,得到了热解气化炉中主要可调节参数热解温度、进料速率等与生物质热解气中H_2、CO等含量的数据.利用灰色关联方法,分析了主要可调节参数与生物质气中H_2、CO含量及H_2/CO比值的关系.结果表明:热解温度对生物质气中心、CO含量及H_2/CO比值的影响最为明显(其关联度为(0.705,0.760,0.641)),进料速率次之,罗茨风机抽气速率最弱;CO含量受3个主要可调节参数的影响最为明显(其关联度为(0.760,0.628,0.709)~T).根据该实验制备H_2/CO比值接近2的二甲醚合成气的目标和灰关联分析结果,提供了增大H_2/CO比值的方法.找出了热解气化炉中的可调节参数中影响生物质热解气体产物H_2、CO含量的主要参数,为生物质热解气化合成二甲醚中制备较高含量的H_2、CO及合适H_2/CO比值的合成气提供了前提条件.  相似文献   

14.
生物质组分热解气化特性研究现状   总被引:2,自引:2,他引:0  
为了提升生物质气化气热值,减少焦油产率,越来越多的研究者开始试图从生物质组分的角度对热解气化特性进行探索.概述了碱金属、温度、压力、升温速率在热解气化过程中对生物质组分造成的影响,以及纤维素、半纤维素、木质素、萃取物和组分间相互作用对生物质热解气化过程造成的影响.提出了在二组分相互作用研究的基础上,应继续开展三组分相互作用的实验研究,以及生物质模化物和生物质原料化学结构差异对生物质原料热解气化特性的影响.此外,提出了采用单变量对照实验方法研究单变量的作用大小.  相似文献   

15.
生物质气化焦油催化裂解特性   总被引:17,自引:5,他引:17  
以白云石为载体制备的Ni基催化剂对松木粉在700℃下气化产生的焦油进行了催化裂解实验研究,并与重油裂解催化剂进行了对比。结果表明:石油化工重油裂解催化剂对生物质气化焦油具有一定的催化裂解作用;Ni的掺入方式和催化剂的煅烧温度对催化剂的性能具有显著的影响。以100~120目白云石粉为载体,900℃下煅烧的Ni基催化剂在700℃(2下焦油裂解对H2和CH4具有很好的选择性(H2为78.3%,H2 CO为92.3%,CH4为2.3%);100h老化实验显示H2/CO随催化剂活性降低而逐渐减小。  相似文献   

16.
高温移动床废轮胎与生物质直接热解制气性能研究   总被引:1,自引:0,他引:1  
对以不同比例组成的废轮胎与生物质均匀混合物在移动床内高温直接热解的制气性能进行了研究,考察了温度和废轮胎含量对产物产率、气体组分以及热值等影响。结果表明,温度对直接热解气产率和热值影响较大,温度越高,气体产率越大而热值越小;混合物中废轮胎含量增大,热解气中碳氢气体含量增多而含氧气体减少,气体产率逐渐减小而热值增大。温度升高,合成气(H2+CO)含量和H2/CO比值均增大;废轮胎含量增大,合成气(H2+CO)含量和H2/CO比值先增大后减小。当热解温度为1 000℃,废轮胎含量为35%时,热解产物中(H2+CO)含量最高为61%,且H2/CO的比值达到最大值为1.53,有利于作为工业合成气原料。同一温度下,混合物直接热解气热值远远高于生物质单独热解,说明废轮胎的掺入有助于优化热解气组成,提升燃气品质。  相似文献   

17.
利用自行设计的固定床快速热裂解试验系统,研究了玉米秸秆催化热解(催化剂为CaO)规律及催化剂对热裂解产物分布的影响,探讨了CaO的催化机理.结果表明,750℃时,CaO在促进焦油裂解的同时,也促进了焦炭和气体产物的生成;CaO对气体产物中的CO2具有吸附作用,降低了CO2的含量,它对大分子脱氢具有明显的催化选择性,增加了产气中H2的含量.在试验中采用了2种催化剂添加方式,添加比为1:1(质量比);分析了不同催化剂添加方式对催化热解的影响;采用悬挂方式时产气率达到57.68%;采用混合方式时,燃气中H2含量高达33.33%,燃气热值达到了12.389 MJ/m3.  相似文献   

18.
生物质催化热解气化热重分析研究   总被引:3,自引:0,他引:3  
采用热重分析与气相色谱分析(TG-GC)相结合的方法,开展了以麦秸为主要研究对象的生物质催化热解气化实验研究,探讨了以NiO和CaO为催化剂,水蒸气气氛下的麦秸挥发分析出特性、半焦的气化特性、气化反应动力学特性以及催化剂对麦秸气化产物的影响.实验结果表明麦秸水蒸气气氛下的反应活性明显提高,气化反应过程中热解阶段视为一级反应,半焦气化视为缩核反应.非催化条件下麦秸的半焦气化在800℃以上才进行,添加NiO与CaO均促进了麦秸与水蒸气的气化反应,提高了气化过程的碳转化率和反应速率,但二者对半焦气化的促进机理以及气体产物的催化选择性有明显差异.添加NiO时H2产率最大,达到34mol/kg麦秸,且使气化反应温度明显降低.添加CaO不仅促进了H2和CO的生成,而且CH4产率也明显提高,表明CaO更有利于大分子碳氢化合物的裂解.  相似文献   

19.
以木本中药渣为原料,采用浸渍法负载不同含量K2CO3催化剂;通过热重实验,分析中药渣催化热解特性和热解特征参数,并采用Starink法进行动力学分析,计算催化热解反应的表观活化能;使用固定床热解炉,优化催化热解反应条件,考察不同K2CO3负载量对热解产物分布的影响规律。热重结果表明,K2CO3能显著降低中药渣的初始热解温度和最大热解温度,从而降低热解快速失重段的反应活化能;且K2CO3负载量越大,催化热解效果越好。热解实验证实:K2CO3含量为中药渣催化热解反应的最主要影响因素,它可加速生物基大分子的低温解聚和热解中间产物的催化裂解,既可降低热解油产率,又能大幅提升H2、CO和C2H6等小分子低碳烃气体的产率,且有利于提高热解气的H2/CO比例。  相似文献   

20.
传统的用来生产工业和民用中等热值气体的生物质热解过程面临着两个缺点,即产气率低和高含量的气相焦油蒸汽引起的下游设备的腐蚀.为克服这些缺点,在保证热解气热值几乎不变的条件下,在实验室内的一套热解系统中研究了运行和设计参数对生物质热解过程的影响.研究的参数包括反应温度、挥发相在热解炉中的停留时间、生物质原料颗粒的预处理、外部加热炉的加热速率和热解炉的热质传递能力.此外,本文还研究了一个独立的裂解炉的运行温度和热解炉的几何形状对燃料气生产的影响.结果表明,上述参数对生物质热解气的产率是敏感的,而且热解气的热值始终在13~15MJ/m^3之间变化.这一热值确保热解气可以较好地用作燃气轮机的动力燃料或炊事燃料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号