首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   

2.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

3.
The effects of auxin and osmotic stress on elongation growth of maize (Zea mays L.) coleoptile segments are accompanied by characteristic changes in the extensibility of the growth-limiting cell walls. At full turgor auxin causes growth by an increase in wall extensibility (wall looseining). Growth can be stopped by an osmotically produced step-down in turgor of 0.45 MPa. Under these conditions auxin causes the accumulation of a potential for future wall extension which is released after restoration of full turgor. Turgor reduction causes a reversible decrease in wall extensibility (wall stiffening) both in the presence and absence of auxin. These changes in vivo are correlated with corresponding changes in the rheological properties of the cell walls in vitro which can be traced back to specific modifications in the shape of the hysteretic stress-strain relationship. The longitudinally load-bearing walls of the coleoptile demonstrate almost perfect viscoelasticity as documented by a nearly closed hysteresis loop. Auxin-mediated wall loosening causes an increase of loop width and thus affects primarily the amount of hysteresis in the isolated wall. In contrast, turgor reduction by osmotic stress reduces loop length and thus affects primarily the amount of viscoelastic wall extensibility. Pretreatment of segments with anoxia and H2O2 modify the hysteresis loop in agreement with the conclusion that the wall-stiffening reaction visualized under osmotic stress in vivo is an O2-dependent process in which O2 can be substituted by H2O2. Cycloheximide specifically inhibits auxin-mediated wall loosening without affecting wall stiffening, and this is mirrored in specific changes of the hysteresis loop. Corroborating a previous in vivo study (Hohl et al. 1995, Physiol. Plant. 94: 491–498) these results show that cell wall stiffening in vivo can also be demonstrated by Theological measurements with the isolated cell wall and that this process can be separated from cell wall loosening by specific changes in the shape of the hysteresis loop.  相似文献   

4.
Three h white light irradiation of etiolated maize seedlings ( Zea mays L. cv. Jubilee) inhibited mesocotyl elongation and caused a sharp decrease in cell wall plastic extensibility as measured by the Instron technique. The plastic extensibility following white light irradiation (3 h) was photomodulated by phytochrome. Although the photomodulation of the plastic extensibility was correlated with growth during 20 h, no such correlation was observed at shorter times. The addition of indole-3-acetic acid to light-inhibited intact seedlings, or seedlings from which the coleoptile and inner leaves were excised, resulted in a stimulation of growth. However, none of the IAA concentrations could reverse light inhibition. The possibility of a correlative relationship between phytochrome, auxin and cell wall extensibility is discussed.  相似文献   

5.
Kazuo Takeda  Hiroh Shibaoka 《Planta》1981,151(4):385-392
Throughout the entire period of cell growth, the microfibrils on the inner surface of the outer tangential walls of the epidermal cells of Vigna angularis epicotyls are running parallel to one another and their orientation differs from cell to cell. Although transverse, oblique and longitudinal microfibrils can be observed irrespective of cell age, the frequency distribution of microfibril orientation changes with age. In young cells, transversely oriented microfibrils predominate. In cells of medium age, which are still undergoing elongation, transverse, oblique and longitudinal microfibrils are present in quite similar frequencies. In old, non-growing cells, longitudinally oriented microfibrils are predominent. A decrease in the relative frequency of transversely oriented microfibrils with cell age was also observed in the radial epidermal walls.  相似文献   

6.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

7.
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.  相似文献   

8.
Auxin-induced changes of wall-rheological properties during different growth rates of rye coleoptile segments (Secale cereale L.) were investigated. In addition, changes of osmotic concentration and turgor pressure were measured. Decrease of turgor and of osmotic concentration followed a synchronous time course. Auxin-incubated segments exhibited a faster decrease and eventually lower values of both parameters. Creep test extensibility measurements demonstrate that apparent plastic as well as elastic extensibility of distilled-water-incubated segments strongly decreased during 24 h. In auxin-incubated segments apparent plastic as well as elastic extensibilities were strongly increased, even in the absence of growth due to insufficient turgor pressure. The increasing effect of auxin on elastic wall properties is also reflected by an increase in relative reversible length (part of segment length by which segments shrink after freezing/thawing as referred to total length) and a complementary decrease of relative irreversible length (remaining length after turgor elimination as referred to turgid length); again the effects were independent of growth rate and turgor pressure. Cellulose synthesis inhibition of approx. 80% by dichlorobenzonitrile (DCB) had no significant effect either on growth or on wall-rheological properties. Independent of whether the changed rheological wall behaviour of auxin-incubated segments is causally related to the mechanism of auxin-induced wall loosening, it indicates changes of wall polymer properties and/or interactions which are conserved when no actual length increase occurs due to insufficient turgor pressure. The results suggest that IAA-induced wall loosening may be primarily mediated by cell wall changes other than cleavage of covalent, load-bearing bonds as hypothesized in various wall loosening models.  相似文献   

9.
The peripheral cell wall(s) of stems and coleoptiles are 6 to 20 times thicker than the walls of the inner tissues. In coleoptiles, the outer wall of the outer epidermis shows a multilayered, helicoidal cellulose architecture, whereas the walls of the parenchyma and the outer wall of the inner epidermis are unilayered. In hypocotyls and epicotyls both the epidermal and some subepidermal walls are multilayered, helicoidal structures. The walls of the internal tissues (inner cortex, pith) are unilayered, with cellulose microfibrils oriented primarily transversely. Peeled inner tissues rapidly extend in water, whereas the outer cell layer(s) contract on isolation. This indicates that the peripheral walls limit elongation of the intact organ. Experiments with the pressure microprobe indicate that the entire organ can be viewed as a giant, turgid cell: the extensible inner tissues exert a pressure (turgor) on the peripheral wall(s), which bear the longitudinal wall stress of the epidermal and internal cells. Numerous studies have shown that auxin induces elongation of isolated, intact sections by loosening of the growth-limiting peripheral cell wall(s). Likewise, the effect of light on reduction of stem elongation and cell wall extensibility in etiolated seedlings is restricted to the peripheral cell layers of the organ. The extensible inner tissues provide the driving force (turgor pressure), whereas the rigid peripheral wall(s) limit, and hence control, the rate of organ elongation.  相似文献   

10.
U. Kutschera  P. Schopfer 《Planta》1986,169(3):437-442
Plastic and elastic in-vivo extensibilities (Epl and Eel, respectively) of cell walls of growing maize (Zea mays L.) coleoptile segments were measured by stretching living tissue at constant force (creep test) in an extensiometer. The linear displacement transducer used as a measuring device permits the determination of load-induced extensions in the range of 0–1% of the segment's length, leading to a minimal disturbance of the hydraulic parameters of the tissue and allowing the measurement of unidirectional cell-wall creep at virtually unchanged turgor and metabolic activity. A rein-vestigation of the time-course of indole-3-acetic acid-promoted and abscisic acid-inhibited wall loo-sening revealed that the in-vivo creep test yields results very similar to those obtained previously with the in-vitro creep test [Kutschera and Schopfer, 1986, Planta 167, 527–535]. The hormones affect elongation rate and Epl in a closely correlated manner both in step-up as well as step-down growth changes whereas Eel remains unaltered. It is argued that both hormones influence growth by modifying Epl of the outer epidermis and that this effect can be quantitatively measured, in relative units, by either the in-vivo or the in-vitro creep test.Abbreviations ABA ±abscisic acid - Eel, Epl elastic and plastic in-vivo cell-wall extensibility, respectively - Etot Eel+Epl - IAA indole-3-acetic acid; m, cell-wall yielding coefficient  相似文献   

11.
W. Bleiss 《Planta》1994,192(3):340-346
The length of parenchyma cells along the axis of dark-grown coleoptiles of Triticum aestivum L. and the pattern of competence for red-light-(R-) induced stimulation or inhibition of cell elongation in the course of coleoptile development were determined by microscopic measurements in a file of 240 cells from the tip to the base. On the basis of these measurements distinct zones (responding in different ways to R) were selected for studying the early time course of phytochrome-mediated growth-rate changes in intact coleoptiles by use of a sensitive transducer system. Between 2 d and 4 d after sowing dark-grown coleoptiles showed a graded incline in cell growth activity from the apex to the base (growth gradient). Whereas cell elongation in the coleoptile base ceased 4 d after sowing, cell elongation speeded up in the tip and middle region at that time. Those cells that grew slowly in darkness (tip and middle region between 2d and 3 d after sowing) were stimulated in growth by R-pulse irradiation (1 min R, 660 nm, 1000 J · m–2). In contrast, the growth of fast-growing cells (base between 2 d and 4 d after sowing, tip and middle region between 4 d and 5 d after sowing) was inhibited by R. However, the starting time for R-induced growth changes was different for different coleoptile zones. The respective data point to the storage of a phytochrome-mediated signal in the cells of the middle region, until these cells become competent to respond to it; alternatively, Pfr, the far-red-light-absorbing form of phytochrome, may be stored in a stable form. Continuous recordings on the effect of R, far-red (FR) and R/FR on the zonal growth responses were made on intact coleoptiles, selected 3 d after sowing. During a 5-h investigation period the R-induced changes in growth rate could be divided into two phases: (i) A transient growth inhibition which started approx. 15 min after R. This response was qualitatively the same in all coleoptile zones investigated (tip, middle region, base). (ii) Zonal-specific growth responses which became measurable approx. 2.5 h after R, i.e. growth promotion in the tip, growth inhibition in the base and an adaptation of growth rate to the dark control level in the middle region. The R-induced growth rate changes were reversible by FR for both phases. Additional growth experiments on excised coleoptile segments under R and auxin application indicated that the zonal-specific growth promotion or inhibition may be not mediated by an influence of R on the auxin level.Abbreviations FR far-red light - Pfr far-red-light-absorbing form of phytochrome - R red light The technical assistance of Mrs. B. Liebe is gratefully acknowledged.  相似文献   

12.
Cultured mesophyll protoplasts of Nicotiana tabacum L. can be hormonally induced into different developmental pathways. In a medium containing auxins (NAA) and cytokinins (BAP) cells divide and eventually give rise to calli. When only auxins are present cells elongate and finally differentiate into very long tubular cells. We focused on the sequence of events leading to elongation. When cultured in a high (1 mg/l) auxin concentration elongating cells seem to pass a certain threshold and increase their nuclear DNA up to about 16C. Cells cultured in a low (0.065 mg/l) auxin concentration only have C-values up to 4C, are unable to pass this threshold and finally fail to elongate. Besides the concentration dependence of the auxin signal, the efflux of auxin seems to be necessary for elongation since addition of TIBA drastically reduces the amount of elongating cells. Concomitant with the changes in nuclear physiology, auxin-induced axiality is seen as sequential rearrangements of microtubules and actin-filaments and of cell wall cellulose microfibrils from 'randomly' arranged in spherical cells to an orientation perpendicular to the long axis of elongating cells.  相似文献   

13.
Summary Thersw1 mutant ofArabidopsis thaliana has a single amino acid substitution in a putative glycosyl transferase that causes a temperature-dependent reduction in cellulose production. We used recently described methods to examine root growth by surface marker particles, cell wall structure by field emission scanning electron microscopy and microtubule alignment by immunofluorescence after the mutant is transferred to its restrictive temperature. We find that raising the temperature quickly accelerates root elongation in both wild type and mutant, presumably as a result of general metabolic stimulation, but that in the mutant, the rate declines within 7–8 h and elongation almost ceases after 24 h. Radial swelling begins at about 6 h in the mutant and root diameter continues to increase until about 24 h. The normal transverse alignment of microfibrils is severely impaired in the mutant after 8 h, and chemical inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile causes a similar loss of orientation. After 24 h, microfibrils are not clearly visible in the walls of cells that would have been in the mitotic and early-elongation zone of wild-type roots. Changes in older cells are less marked; loss of transverse microfibril orientation occurs without disruption to the transverse orientation of cortical microtubules. The wild type shows none of the changes except for acceleration of elongation, which in its case is sustained. We conclude that microfibril alignment requires the normal functioning of RSW1 and that, in view of the effects of dichlorobenzonitrile, there may be a more general linkage between the rate of cellulose production and its proper alignment.Abbreviations DCB 2,6-dichlorobenzonitrile - REGR relative elemental growth rate Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

14.
H. Edelmann  P. Schopfer 《Planta》1989,179(4):475-485
The kinetics of inhibition by protein- and RNA-synthesis inhibitors (cycloheximide and cordycepin, respectively) of indole-3-acetic acid (IAA)-induced elongation growth were investigated using abraded coleoptile segments of Zea mays L. Removal of the cuticle — a diffusion barrier for solutes — by mechanical abrasion of the outer epidermal cell wall increased the effectiveness of inhibitors tremendously. In an attempt to elucidate the role of growth-limiting protein(s) (GLP) in the growth mechanism the following results were obtained. The elongation induced by IAA was completely inhibited when cycloheximide (10 mol·l-1) was applied to abraded coleoptile segments as shortly as 10 min before the onset of the growth response (=5 min after administration of IAA). However, when cycloheximide was applied after 60 min of IAA treatment (when a steady-state growth rate is reached), the time required for complete cessation of growth was much longer (about 40 min). Cycloheximide inhibited the incorporation of [3H]leucine into protein within about 5 min. Cordycepin (400 mol·l-1) prevented IAA-induced growth when applied as shortly as 25 min before the onset of the growth response (=10 min before administration of IAA) but required more than 60 min for a full inhibition of steady-state growth. The incorporation of [3H]adenosine into RNA was inhibited by cordycepin within 10 min. It is concluded that, contrary to previous investigations with nonabraded organ segments, the initiation of growth by IAA depends directly on the synthesis of GLP. Moreover, the apparent lifetime of GLP is at least four times longer than the time required by cycloheximide to inhibit the initiation of growth by IAA. This is interpreted to mean that GLP is not present before IAA starts to act but is synthesized as a consequence of IAA action starting a few minutes before the initiation of growth. Interpreting the kinetics of growth inhibition by cordycepin in a similar way, we further conclude that GLP synthesis is mediated by IAA-induced synthesis of the corresponding mRNA which starts about 10 min before the onset of GLP synthesis. Inhibition by cycloheximide and cordycepin of IAA-induced growth cannot be alleviated by acidifying the cell wall to pH 4-5, indicating that these inhibitors do not act on growth via an inhibition of auxin-mediated proton excretion.Abbreviations CHI cycloheximide - COR cordycepin - GLP growth-dimiting protein(s) - IAA indole-3-acetic acid - mRNAGLP mRNA coding for GLP  相似文献   

15.
M. Hohl  P. Schopfer 《Planta》1992,187(4):498-504
Segments of maize (Zea mays L.) coleoptiles demonstrate plastic cell-wall extensibility (Epl) as operationally defined by the amount of irreversible strain elicited by stretching living or frozen-thawed tissue under constant load in an extensiometer (creep test). Changes of Epl are correlated with auxin- and abscisic-acid-dependent growth responses and have therefore been causally related to hormone-controlled cell-wall loosening. Auxin induces an increase of Epl specifically in the outer epidermal wall of maize coleoptiles which is considered as the growth-limiting wall of the organ. However, detailed kinetic measurements of load-induced extension of frozen-thawed coleoptile segments necessitates a revision of the view that Epl represents a true plastic (irreversible) wall deformation. Segments demonstrate no significant irreversible extension when completely unloaded between loading cycles. Moreover, Epl can be demonstrated repeatedly if the same segment is subjected to repeated loading cycles in the extensiometer. It is shown that these phenomena result from the hysteresis behaviour of the cell wall. Stress-strain curves for loading and unloading form a closed hysteresis loop, the width of which represents Epl at a particular load. Auxin-treatment of segments leads to a deformation of the hysteresis loop, thereby giving rise to an increase of Epl. These results show that the creep test estimates the viscoelastic (retarded elastic) properties rather than the plastic properties of the wall.Abbreviations Etot, Eel, Epl total, elastic, and plastic cell-wall extensibility as defined by the standard creep test - L load Supported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

16.
The rheological properties of corn (Zea mays L. cv. Garant) root elongation zones were investigated by means of a computer-controlled extensiometer. Creep closely followed a logarithmic time function, which was used to quantify creep activity. Pretreatment with auxin, which inhibits extension growth in roots, lowered the creep activity and the apparent plastic extensibility. While the time course of the inhibition of apparent plastic extensibility lagged behind the cessation of elongation growth, the drop in creep activity matched the growth inhibition more closely. Creep activity and apparent plastic extensibility were not significantly affected by pH. These data support the view that the auxin-induced cell wall stiffening (e.g. by cross-linking processes), while causal for the growth inhibition, is not brought about by a cell wall alkalinization. Received: 10 December 1996 / Accepted: 19 August 1997  相似文献   

17.
The effect of submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) on coleoptile growth and ultrastructure, extensibility and chemical composition of the cell walls was investigated. The lag-time between start of submergence and the onset of the enhancement of growth was less than 4 h. The growth response was associated with a drastic thinning of the cell walls and an increase in wall extensibility. At the outer epidermal wall of both air-grown and submerged coleoptiles electron-dense (osmiophilic) particles were detected. During submergence, the net accumulation of cellulose and hemicellulose was reduced, but the increase in pectic substances was unaffected. Submergence caused an 80% inhibition of the net accumulation of wall-bound phenolics (ferulic- and diferulic acid) compared with air-grown controls. The osmotic concentration of the tissue saps was not affected by submergence. Our results support the hypothesis that rapid coleoptile elongation under water is caused by an inhibition of the formation of phenolic cross-links between matrix polysaccharides via diferulate, which results in a mechanical stiffening of the cell walls in the air-grown coleoptile.  相似文献   

18.
Cell wall structure and biogenesis in the unicellular green alga, Oocystis apiculata, is described. The wall consists of an outer amourphous primary layer and an inner secondary layer of highly organized cellulosic microfibrils. The primary wall is deposited immediately after cytokinesis. Golgi-derived products contribute to this layer. Cortical microtubules underlie the plasma membrane immediately before and during primary wall formation. They function in maintaining the elliptical cell shape. Following primary wall synthesis, Golgi-derived materials accumulate on the cell surface to form the periplasmic layer. This layer functions in the deposition of coating and cross-linking substances which associate with cellulosic microfibrils of the incipient secondary wall. Secondary wall microfibrils are assembled in association with the plasma membrane. Freeze-etch preparations of untreated, living cells reveal linear terminal complexes in association with growing cellulosic microfibrils. These complexes are embedded in the EF fracture face of the plasma membrane. The newly synthesized microfibril lies in a groove of the outer leaflet of the plasma membrane. The groove is decorated on the EF fracture face by perpendicular structures termed “ridges.” The ridges interlink with definitive rows of particles associated with the PF fracture face of the inner leaflet of the plasma membrane. These particles are termed “granule bands,” and they function in the orientation of the newly synthesized microfibrils. Microfibril development in relation to a coordinated multienzyme complex is discussed. The process of cell wall biogenesis in Oocystis is compared to that in higher plants.  相似文献   

19.
Summary Microtubules have been shown to run around the perimeter of the pit aperture of developing bordered pits of Salix fragilis, L. These microtubules are parallel to the microfibrils being produced and do not converge with them. Although microtubules may be parallel to microfibrils in differentiating vessel elements as well as in fibres, many cases have been found where microtubules are not so orientated. There is no direct evidence for the involvement of microtubules in the orientation of microfibrils in the secondary wall, although their position during wall synthesis suggests some ancillary role.  相似文献   

20.
Kaori Takesue  Hiroh Shibaoka 《Planta》1998,205(4):539-546
The orientation of microtubules (MTs) was examined in epidermal cells of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls. The orientation of MTs adjacent to the outer tangential wall of the cells, which has a crossed polylamellate structure with lamellae of longitudinal cellulose microfibrils alternating with lamellae of transverse cellulose microfibrils, differed from one cell to another. Treatment with an auxin-free solution caused the accumulation of cells with longitudinal MTs and subsequent treatment with a solution that contained auxin resulted in the accumulation of cells with transverse MTs, showing that sequential treatments with auxin-free and auxin-containing solutions can synchronize the reorientation of MTs. The MTs, once reoriented from longitudinal to transverse, returned to longitudinal and then back to transverse once again, the duration of the cycle being about 6 h. Gibberellic acid, known to increase the percentage of cells with transverse MTs, promoted reorientation of MTs from longitudinal to transverse and inhibited that from transverse to longitudinal. Cytochalasin D, an agent that disrupts actin filaments, speeded up the reorientation from transverse to longitudinal and slowed down that from longitudinal to transverse. It caused an increase in the percentage of cells with MTs in mixed orientation, and the percentage of such cells was highest when the percentage of cells with longitudinal MTs was decreasing and that of cells with transverse MTs was increasing. Received: 27 November 1997 / Accepted: 7 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号