共查询到20条相似文献,搜索用时 15 毫秒
1.
论文研究了小波包变换及LPCC参数的提取,在此基础上,提取了基于小波包变换和LPCC的新参数(DWT-LPCC),并基于GMM系统进行说话人识别实验。结果表明,相对于LPCC参数,DWT-LPCC参数大大提高了噪声环境下的说话人识别率。 相似文献
2.
说话人识别是语音识别的一种特殊方式,其目的不是识别语音内容,而是识别说话人是谁,即从语音信号中提取个人特征。采用矢量量化(VQ)可避免困难的语音分段问题和时间归整问题,且作为一种数据压缩手段可大大减少系统所需的数据存储量。通过说话人识别相关技术的研究,提出并设计了一个基于VQ的说话人识别系统,实验证明,当用于训练的数据量较小时,可以得到比较稳定的识别性能。 相似文献
3.
采用改进的小波去噪方法对含噪语音进行了前端处理,并针对说话人识别的特点,在小波重构之前对各小波系数进行加权处理;识别过程采用GMM识别算法。实验结果显示,相比纯粹使用MFCC作为识别特征的说话人识别提出的方法对于含噪说话人识别有明显的优越性。该方法对实时说话人识别有很好的指导作用。 相似文献
4.
5.
基于小波包变换和MFCC的说话人识别特征参数 总被引:1,自引:0,他引:1
研究了小波包变换及MFCC参数的提取,结合二者特点,提取了基于小波包变换和MFCC的新参数DWT-MFCC.并在基于16阶GMM系统上进行说话人识别实验。实验结果表明,相对于传统的MFCC参数,在相同的噪声环境下,DWT—MFCC参数具有更高的说话人识别率。 相似文献
6.
7.
8.
9.
提出了一种基于改进GMM模型和韵律联合短时谱的说话人转换方法.通过在训练阶段引入改进的GMM模型,克服传统GMM模型造成的转换语音过平滑现象,并将线谱对频率LSF和基音频率联合起来组成韵律联合短时谱,更准确地刻画说话人的短时频域特征和声腔的共振特性.实验表明,这种方法能够有效地捕捉说话人的个性化特征和韵律特征.另外,在保证变换语音目标倾向性的同时,一定程度上克服了过平滑现象,提高了变换语音的音质. 相似文献
10.
针对与文本无关说话人识别GMM模型中,某些非目标模型的测试帧的模型得分可能会比较高,从而引起误判的问题。从帧似然概率的统计特性出发,提出了一种GMM非线性变换方法。该方法通过对每帧各模型的得分赋予不同的权值,使得得分高的模型权值大,得分低的模型权值小,由于目标模型得分高的帧要多于其它非目标模型,所以这样可以提高目标模型的总得分,降低非目标模型的得分,从而降低误判的可能。理论推导和实验结果表明,该变换方法能够提高GMM说话人识别的识别率。 相似文献
11.
噪声环境下说话人识别的组合特征提取方法 总被引:1,自引:0,他引:1
针对在干净语音环境下识别率很高的说话人识别系统,在噪声环境下识别率显著降低的缺点,本文结合具有多分辨率分析特点的小波变换技术,提出一种基于小波变换的组合特征提取算法,以提高说话人识别系统在噪声环境下的识别性能。对40个说话人的语音库SUDA2002-D2,在噪声环境下进行的识别实验结果表明,本文提出的组合特征提取算法可以在噪声环境下有效地提高说话人识别系统的识别性能。 相似文献
12.
基于多特征有效组合的说话人识别 总被引:1,自引:0,他引:1
通过分析当今说话人识别系统中常用的一些特征参数,以提高说话人识别的识别率为目的,在Matlab 6.5软件环境下提出了将Mel频率倒谱(MFCC)、线性预测倒谱(LPCC)及他们的一阶差分和基音周期等多种特征有效结合进行说话人识别的方法。采用短时自相关法提取基音周期,在识别过程中采用改进的动态规整算法,将模板的匹配过程与检验量的计算分离开,每帧给出一个说话人辨认结果,最后综合各帧的辨认结果,得出最佳匹配结果。经过多次实验证明,采用以上方法使用多特征有效结合比单个使用各种特征效果要好,能在一定程度上提高系统区分说话人的能力。 相似文献
13.
14.
噪声环境下,为了提高说话人识别系统的鲁棒性,需要对系统进行各种抗噪声处理。采用梅尔频率倒谱系数作为语音的特征参数,矢量量化方法进行模式匹配,将改进的基于听觉掩蔽效应的语音增强器作为预处理器,对语音信号首先进行降噪处理。语音增强器实验结果表明,经过降噪处理后提高了输入信号的信噪比,减少了语音失真,同时很好地抑制了背景噪声和残余音乐噪声。将经过降噪处理的语音信号送入说话人识别系统,提高了系统的识别性能。 相似文献
15.
VQ+WNN(Vector Quantization and Wavelet Neural Network)说话人识别系统主要利用VQ进行矢量量化,将量化矢量送到小波神经网络进行说话人训练和识别。经过VQ量化后的特征矢量可以大大减少小波神经网络的运算量,提高网络的收敛速度与识别精度。虽然运算量是可以接受的,但如果在矢量量化之前采用分量处理方法,去除对识别精度影响不大的特征矢量,则可进一步减少运算量,而识别精度基本维持不变。 相似文献
16.
采用遗传算法的VQ码本设计及说话人识别 总被引:2,自引:0,他引:2
矢量量化(VQ)方法是文本无关说话人识别中广泛应用的建模方法之一。在矢量量化过程中,经典的LBG算法收敛速度快,但极易收敛于局部最优点,无法保证根据有限样本数据得到最优码本,并最终影响系统识别性能。考虑到遗传算法(GA)是一种具有全局化寻优搜索能力的算法,本文提出了遗传算法和K均值算法相结合的综合分析方法GA-K进行码本设计,改善了码本的质量。讨论了具体的算法实现,分析了在不同的特征参数LPCC及MFCC、不同测试语音长度下的说话人识别性能。实验结果显示,GA-K方法优于传统的LBG算法,可以很好地协调收敛性和识别率之间的关系。 相似文献
17.
18.
19.