首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A protein spot cored from a silver-stained two dimensional (2D) gel of germinal vesicle stage immature mouse oocytes was identified as Transforming Acidic Coiled Coil containing protein (TACC3) by tandem mass spectrometry. PCR amplification revealed two alternatively spliced forms, Tacc3a and Tacc3b, in mouse ovarian cDNA libraries. TACC3a encoded a 630 aa protein with a predicted mass of 70 kDa. It contained seven 24 aa repeats at the N-terminus and two coiled-coil domains at the C-terminus. TACC3b encoded a 426 aa protein with a predicted mass of 49 kDa also containing two coiled coil domains, but lacking the 168 aa repeat region. In addition to homology to the TACC family members, murine TACC3 also showed 35.7% identity to the Xenopus protein, Maskin, a cytoplasmic polyadenylation element binding protein (CPEB)-associated factor. Northern blot analysis demonstrated that TACC3a is abundantly expressed in adult testis and spleen and is moderately expressed in the ovary, heart, and lung, suggesting a wide tissue distribution. Both myc-tagged TACC3a and TACC3b targeted to the cytoplasm of transiently transfected CV-1 cells. In situ hybridization of mouse ovarian tissue sections displayed abundant expression of TACC3 specifically in the cytoplasm of growing oocytes, but not in primordial or atretic follicles. This pattern of expression suggests that TACC3 is expressed in ovarian cells undergoing active growth and development.  相似文献   

2.
Transforming acidic coiled-coil (TACC) proteins are hypothesized to play a role in normal cellular growth and differentiation and to be involved in centrosomal microtubule stabilization. Our current studies aim to delineate the expression pattern of TACC3 protein during cellular differentiation and in a variety of normal human tissues. TACC3 is known to be upregulated in differentiating erythroid progenitor cells following treatment with erythropoietin and is required for replication of hematopoietic stem cells. However, we demonstrate that a dramatic upregulation of TACC3 also occurs during the early differentiation of NIH 3T3-L1 cells into adipocytes and PC12 cells into neurons, indicating that TACC3 mediates cellular differentiation in several cell types. Using real-time PCR, we quantitated the mRNA levels of TACC3 compared to TACC1 and TACC2 in various human adult tissues. We observed the highest expression of TACC3 mRNA in testis, spleen, thymus and peripheral blood leukocytes, all tissues undergoing high rates of differentiation, and a lower level of expression in ovary, prostate, pancreas, colon, small intestine, liver and kidney. In contrast, TACC1 and TACC2 mRNA levels are more widespread. By immunohistochemistry, we confirm that the TACC3 protein localizes to differentiating cell types, including spermatocytes, oocytes, epithelial cells, bone marrow cells and lymphocytes. Thus, these observations are concordant with a basic role for TACC3 during early stages of differentiation in normal tissues.  相似文献   

3.
TACC2 is a member of the transforming acidic coiled-coil-containing protein family and is associated with the centrosome-spindle apparatus during cell cycling. In vivo, the TACC2 gene is expressed in various splice forms predominantly in postmitotic tissues, including heart, muscle, kidney, and brain. Studies of human breast cancer samples and cell lines suggest a putative role of TACC2 as a tumor suppressor protein. To analyze the physiological role of TACC2, we generated mice lacking TACC2. TACC2-deficient mice are viable, develop normally, are fertile, and lack phenotypic changes compared to wild-type mice. Furthermore, TACC2 deficiency does not lead to an increased incidence of tumor development. Finally, in TACC2-deficient embryonic fibroblasts, proliferation and cell cycle progression as well as centrosome numbers are comparable to those in wild-type cells. Therefore, TACC2 is not required, nonredundantly, for mouse development and normal cell proliferation and is not a tumor suppressor protein.  相似文献   

4.
5.
Studies of the role of tuberous sclerosis complex (TSC) proteins (TSC1/TSC2) in pathology have focused mainly on their capacity to regulate translation and cell growth, but their relationship with alterations of cellular structures and the cell cycle is not yet fully understood. The transforming acidic coiled-coil (TACC) domain-containing proteins are central players in structures and processes connected to the centrosome. Here, TACC3 interactome mapping identified TSC2 and 15 other physical interactors, including the evolutionary conserved interactions with ch-TOG/CKAP5 and FAM161B. TACC3 and TSC2 co-localize and co-purify with components of the nuclear envelope, and their deficiency causes morphological alterations of this structure. During cell division, TACC3 is necessary for the proper localization of phospho-Ser939 TSC2 at spindle poles and cytokinetic bridges. Accordingly, abscission alterations and increased frequency of binucleated cells were observed in Tacc3- and Tsc2-deficient cells relative to controls. In regulating cell division, TSC2 acts epistatically to TACC3 and, in addition to canonical TSC/mTOR signaling and cytokinetic associations, converges to the early mitotic checkpoint mediated by CHFR, consistently with nuclear envelope associations. Our findings link TACC3 to novel structural and cell division functions of TSC2, which may provide additional explanations for the clinical and pathological manifestations of lymphangioleiomyomatosis (LAM) disease and TSC syndrome, including the greater clinical severity of TSC2 mutations compared to TSC1 mutations.  相似文献   

6.
7.
The transforming acidic coiled‐coil containing protein 2 (Tacc2) gene and its paralogs, Tacc1 and Tacc3 encode proteins that are associated with the centrosome and involved in microtubule assembly during the cell cycle. Tacc2 produces several splice variants, which are poorly characterized, especially in the rat. Characterization of the temporal/spatial expression patterns of these isoforms would be useful in understanding their distinct and overlapping functions. By comparative sequence analyses of Tacc2 in multiple species, we identified a third splice variant in rat, which is much shorter in size (1,021 aa) than the longest isoform (2,834 aa). This newly identified Tacc2 splice variant (isoform 3) uses a distinct first exon and generates a different open reading frame. Although Isoform 3 is expressed predominantly during developmental stages, the long Tacc2 isoform (isoform 1) is distributed mainly in adult tissues. Multiple protein sequence analyses revealed that Tacc2 Isoform 3 could be the ancient form, as it is conserved in mammals, birds, and amphibians; whereas the long Tacc2 isoforms may have evolved in the mammalian lineage by adding exons toward the 5′ region of the ancient isoform. genesis 52:378–386, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Members of the NFAT (nuclear factors of activated T cells) gene family have been investigated in numerous organisms, including man and mouse. All NFATs may be synthesized in several isoforms differing in amino or carboxy termini due to 5' and 3' alternative splicing of the corresponding mRNA. Recently, we mapped the murine Nfat5 gene to chromosome 8D. In the present paper we describe for the first time the complete sequence and primary structure of murine Nfat5, two new spliced isoforms, and the expression of murine Nfat5 in embryonic and adult mouse tissues.  相似文献   

9.
10.
11.
12.
Murine transforming growth factor-beta 2 (TGF-beta 2) cDNAs were isolated from cDNA libraries derived from a differentiated murine embryonic carcinoma cell line, PCC3. The composite cDNA sequence is 4267 nucleotides long, including a 1217 nucleotides 5'-untranslated sequence, and encodes a murine TGF-beta 2 precursor of 414 amino acids with 96% identity to its human counterpart. Several consensus polyadenylation sequences are present in the 1807 nucleotides 3'-untranslated sequence. Five TGF-beta 2 mRNA species are observed in the developing mouse fetus and they show different patterns of expression during development. TGF-beta 2 mRNA expression was also examined in adult mouse tissues, in which four of the five RNA species were observed. TGF-beta 2 mRNAs were present in all adult mouse tissues examined, except liver, and was most abundant in placenta, the male submaxillary gland and lung. The patterns of expression suggest a physiological role for TGF-beta 2 both in embryonic development and in the maintenance of adult tissues.  相似文献   

13.
14.
Haidl ID  Huber G  Eichmann K 《Gene》2002,283(1-2):163-170
We have analyzed the tissue-specific expression, mRNA isoforms, and genomic structure of murine ADAM28, an ADAM family member recently discovered in human and mouse. While human ADAM28 is expressed in lymphocytes (J. Biol. Chem. 274 (1999) 29251), we observe expression of murine ADAM28 in thymic epithelial cells and developmentally related tissues including the trachea, thyroid, stomach, and lung, but not in lymphocytes. The expression patterns in adult and day 15.5 embryos are similar. We have detected multiple mRNA isoforms varying in the cytoplasmic domain coding sequence and 3prime prime or minute untranslated region due to alternative polyadenylation and splicing events that occur in the final four exons and three introns. The entire ADAM28 gene spans 55 kb and contains 23 exons. The protein sequence contains all conserved residues required for metalloprotease activity, indicative of a role in ectodomain shedding and extracellular matrix modeling. Given its unique expression pattern and potential functions, murine ADAM28 may play a role in organogenesis and organ-specific functions such as thymic T cell development.  相似文献   

15.
The aryl hydrocarbon receptor nuclear translocator (Arnt) and hypoxia-inducible factor (HIF)-1alpha mediate cellular responses to hypoxia. We investigated the ability of hypoxia to regulate Arnt and HIF-1alpha mRNA in the heart in vivo. We cloned avian Arnt, developed an in vivo model of chronic cardiac hypoxia, and measured expression of cardiac Arnt and HIF-1alpha mRNA by quantitative RT-PCR. Chronic hypoxic exposure (24 h to 15% O(2)) of day 9 chick embryos resulted in a 30-fold increase in covalent binding of (3)H-misonidazole, a hypoxic tissue marker, to cardiac tissue, and a 2-fold induction of cardiac inducible nitric oxide synthase mRNA, compared to normoxic controls. In this same model, cardiac Arnt mRNA expression decreased by 35%, while HIF-1alpha mRNA expression increased 400%. These data suggest that regulation of Arnt and HIF-1alpha mRNA expression may contribute to the physiological responses of the heart during prolonged hypoxia.  相似文献   

16.
Growth arrest-specific (Gas) genes are expressed during serum starvation or contact inhibition of cells grown in culture. Here we report the isolation and characterization of Gas8, a novel gene identified on the basis of its growth arrest-specific expression in murine fibroblasts. We show that production of Gas8 mRNA and protein occurs in adult mice predominantly in the testes, where expression is regulated during postmeiotic development of male gametocytes. Whereas a low level of Gas8 mRNA was detected by Northern blotting in testes of murine male neonates and young adolescents, Gas8 mRNA increased rapidly postmeiotically. In adult males, both Gas8 mRNA and protein reached steady state levels in testes that were 10-fold higher than in other tissues. Immunohistochemical analyses showed that Gas8 protein accumulates in gametocytes as they approach the lumen of seminiferous tubules and is localized to the cytoplasm of round spermatids, the tails of elongating spermatids, and mature spermatid tail bundles protruding into the lumen; in epididymal spermatozoa Gas8 protein was present in the flagella. However, premeiotic murine gametocytes lacked detectable Gas8 protein, as did seminiferous tubules in biopsy specimens from seven human males having cytological evidence of non-obstructive azoospermia secondary to Sertoli cell-only syndrome. Our findings, which associate Gas8 production developmentally with the later stages of spermatogenesis and spatially with the sperm motility apparatus, collectively suggest that this growth arrest-specific gene product may have a role in sperm motility. This postulated role for Gas8 is supported by our observation that highly localized production of Gas8 protein occurs also in the cilia of epithelial cells lining pulmonary bronchi and fallopian tubes and by the flagellar association of a Trypanosoma brucei ortholog of Gas8.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号