首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal diffusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and La1.7Dy0.3Zr2O7. La2(Zr1.8Ce0.2)2O7, La1.7Dy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy2O3, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8Wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.  相似文献   

2.
Sm0.2Ce0.8O1.9(SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes were investigated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) technologies. A relative density of SDC electrolyte sintered at 1300 oC reached 97.3% and the mean SDC grain size was about 770 nm. Their ionic conductivity and thermal expansion coefficient were also measured by electrochemical workstation and dilatometer. The electrolyte attained a high conductivity of 5×10–2 S/cm at 800 oC with an activation energy of 1.03 eV and a proper thermal expansion coefficient of 12.6×10–6 K–1.  相似文献   

3.
In this work, both the thermal expansion and electrical conductivity of nanocrystalline La2Mo2O9 were studied.The nanocrystalline powder of La2Mo2O9 was obtained by sol-gel method, and with the help of SHP (superhigh pressure)up to 4.5 × 104 atm at 700 ℃ for a short time, and the nanocrystalline powder was densified without obvious particle size growth. The electrical conductivity of nanocrystalline La2Mo2O9 was one orderof magnitude lower than that of the microcrystalline sample at the same temperature. Owing to the phase transition, the microcrystalline La2Mo2O9 has an abrupt increase of thermal expansion with a peak value of 48 × 10-6 K-1 at 556 ℃. For the nanocrystalline material, the peak value increases to 112 × 10-6 K-1 at 520 ℃. On the other hand, above 600 ℃ the significant growth of particle size of the nanocrystalline La2Mo2O9 was observed, accompanying by a tremendous increase of thermal expansion with a peak value of third higher than that of La2Mo2O9.  相似文献   

4.
(Ba0.5Sr0.5)1-xPrxCo0.8Fe0.2O3-δ(BSPCFx;x=0.00-0.30) oxides were synthesized by a sol-gel thermolysis process using combination of PVA and urea,and were also investigated as cathode material for intermediate temperature solid oxide fuel cells(IT-SOFCs).X-ray diffraction(XRD) results showed that all the samples formed a single phase cubic pervoskite-type structure after being calcined at 950 oC for 5 h and the lattice constant decreased with the Pr content increasing.The electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) was greatly enhanced by Pr-doping.The thermal expansion coefficient(TEC) of BSPCFx was increased with the content of Pr increasing,and all the thermal expansion curves had an inflection at about 250-400 oC due to the thermal-induced lattice oxygen loss and the reaction of Co and Fe ion.Ac impedance analysis indicated that BSPCFx possessed better electrochemical performance.The polarization resistance of the sample with x=0.2 was only ~0.948 Ω cm2 at 500 oC,significantly lower than that of BSCF(~2.488 Ω cm2).  相似文献   

5.
The properties of LSO-SDC composite electrolytes prepared by the mixed powder with different LSO/SDC mass ratios were studied. The apatite-type lanthanum silicates La10Si6O27(LSO) and Sm0.2Ce0.8O1.9(SDC) were synthesized via sol-gel process and glycine-nitrate process(GNP), respectively. The phase structure, microstructure, relative density, thermal expansion properties and oxygen ion conductivity of the samples were investigated by means of techniques such as X-ray diffraction(XRD), scanning electron microscopy(SEM), Archimedes method, dilatometer, and AC impedance spectroscopy. The results showed that SDC addition to the samples could enhance the density of the samples. However, the LSO-SDC composite electrolyte sintered at 1550 oC was over sintering when the SDC content was 50 wt.%. At the lower content of SDC(0–10 wt.%), the decrease of conductivity was predominantly attributed to the reducing concentration of carriers. However, the conductivities of the composite electrolytes increased with the increasing SDC content(10 wt.%–40 wt.%) because of the enhanced percolation of highly conductive SDC component in the microstructure of composite electrolytes. In addition,the dependence of conductivity on p(O2) showed that LSO-SDC composite electrolytes were stable in the examined range of p(O2).  相似文献   

6.
The interconnect materials La0.7Ca0.3Cr1-xZnxO3-δ(x=0,0.01,0.03,0.05,0.07) were prepared by a microwave assisted sol-gel auto-ignition process.The crystalline structures of the samples were characterized by X-ray diffraction(XRD) and the lattice parameters were evaluated with Rietveld method.For Ca-Zn co-doped LaCrO3 with x=0.03,the sintering activity was improved,and the relative density came up to 96.5% for the sample sintered at 1300 oC for 10 h.The electrical conductivity of the samples was increased from 21.1 S/cm to the maximum of 70.9 S/cm at 650 oC in air,with the x content increasing from 0.01 to 0.03.However,with x further increasing,the electrical conductivity was decreased.The average thermal expansion coefficient(TEC) of the samples at RT-1000 oC in air was ca.10.0×10-6 K-1.All data indicated that the La0.7Ca0.3Cr1-xZnxO3-δ series ceramics would be potential candidate to be used as an interconnect materials for IT-SOFCs.  相似文献   

7.
In order to develop novel cathode materials with high performance for intermediate temperature SOFC(IT-SOFC),Ca and Mn doped rare earth oxides La1-xCaxFe0.9Mn0.1O3-δ(x=0.1,0.3 and 0.5,denoted as LCFM9191,LCFM7391 and LCFM5591) were synthesized by solid state reaction(SSR) method.The formation process,phase structure and microstructure of the synthesized samples were characterized using thermogravimetry/differential scanning calorimetry(TG/DSC),X-ray diffraction(XRD) and scanning electron microscopy(SEM).The thermal expansion coefficients(TEC) of the samples were analyzed at 100-900 oC by thermal dilatometry.The electrical conductivities of the samples were measured with direct current(DC) four-terminal method from 300 to 850 oC.The results indicated that the samples(x=0.1 and 0.3) exhibited a single phase with orthorhombic and cubic perovskite structure,respectively after being sintered at 1200 oC for 3 h.The electrical conductivity of the samples increased with temperature up to a maximum value,and then decreased.The small polaron hopping was regarded as the conducting mechanism for synthesized samples at T≤600 oC.The negative temperature dependence occurring at higher temperature was due to the creation of oxygen vacancies for charge balance.LCFM7391 had higher mixed conductivity(>100 S/cm) at intermediate temperature and could meet the demand of cathode material for IT-SOFC.In addition,the average TECs of LCFM9191 and LCFM7391 were 11.9×10-6 and 13.1×10-6 K-1,respectively,which had good thermal match to the common electrolytes.  相似文献   

8.
A porous cordierite was synthesized at 1350 ℃ using rice husk as silica source and pore forming agent, and La2O3 as fluxing agent. The crystal phases of the cordierite were analyzed by X-ray diffraction (XRD) and their microstructures were observed by scanning electronic microscopy (SEM). The flexural strength, porosity and thermal expansion coefficient of the porous cordierite samples were inves- tigated in detail. Results showed that when 5 wt.% La2O3 was added, the flexural strength, porosity and thermal...  相似文献   

9.
The solid solutions Ce0.9RE0.102-δ(RE=Pr,Nd,Sm,Gd,Dy) were prepared by sol-gel method, The XRD measurement shows that the solid solution is crystallized in cubic fluorite-type structure and the cell volume of Ce0.9RE0.1O2-δ decreases with the increase of atomic number of RE. The ionic conduction for Ce0.9RE0.1O2-δ was measured by impedance spectroscopy and Ce0.9Pr0.1O2-δ has better conductivity. The linear thermal expansion of Ce0.9RE0.1O2-δ decreases with the increase of atomic number of RE.  相似文献   

10.
(Y0.95La0.05)2O3: Ce3+ nano-powder was synthesized by co-precipitation method and sintered at 800 and 900 oC. All the samples were cubic phase characterized by X-ray diffraction (XRD) analysis. The samples sintered at the lower temperature exhibited luminescence. According to the distinguishable structure of Ce 3d peaks and the shift of O 1s lines in the X-ray photoelectron spectroscopy (XPS), luminescence was further confirmed to originate from Ce3+ ions. Effects of introducing La3+ into Y2O3 were discusse...  相似文献   

11.
Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for ap-plications as high temperature thermal barrier coatings because of their high melting points, high thermal expansion coefficients, and low thermal conductivities. In this study, oxides of Sm2Zr2O7, (Sm0.75La0.25)2Zr2O7, (Sm0.5 La0.5)2Zr2O7, (Sm0.25La0.75)2Zr2O7 and La2Zr2O7 were prepared by solid reactions at 1600 ℃ for 10 h using Sm2O3, La2O3 and ZrO2 as the reactants. The phase compositions of these ceramic ma-terials were analyzed by X-ray diffractometer (XRD) and fourier transform infrared spectroscopy (FT-IR) methods, respectively. The micro-structure was observed by scanning electronl microscope (SEM). The thermal conductivities of these ceramic materials were measured using laser-flash method. XRD and FT-IR results showed that pure ceramic materials with pyrochlore structure were prepared successfully. SEM results indicated that microstructures of these ceramic materials were dense and grain boundaries were very clean. The La2O3 doped Sm2Zr2O7 pyrochlores (Sm0.75 La0.25)2Zr2O7 and (Sm0.5 La0.5)2Zr2O7 had lower thermal conductivity than the undoped Sm2Zr2O7. The thermal conductivity of (Sm0.25La0.75)2Zr2O7 was found to be lower than that of La2Zr2O7. The results showed that these ceramic materials had the poten-tial to be used as candidate materials for TBCs.  相似文献   

12.
The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.  相似文献   

13.
Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.  相似文献   

14.
Employing Dy2O3, Al2O3, and SiO2 as starting materials, several series of Dy2O3-Al2O3-SiO2 sealing glass were prepared. The relationship between their coefficients of thermal expansion and the contents of Dy2O3, Al2O3, and SiO2 were studied respectively. Experimental results showed that Dy2O3 and Al2O3 had a positive effect on the coefficient of thermal expansion of glass, whereas, SiO2 had a negative effect. The coefficient of thermal expansion of glass showed an apparent linear relation to the contents of these three raw materials, from which an estimation model was built, to calculate the coefficient of thermal expansion of sealing glass. Relative errors of the calculating results to testing results were no more than 2%, which suggested that the estimation model was reasonable. This study provides a good theory reference for the practical utilizing of this sealing material, through which a proper glass composition for good sealing could be easily found.  相似文献   

15.
重型发电燃气轮机低排放、高效率的发展目标,要求燃气轮机透平的进气温度不断提高。热障涂层作为保护金属热端部件的重要手段,是实现这一目标的关键技术之一。目前世界上最先进的J级燃气轮机的透平进口温度已经达到1600℃,热端部件表面温度超过1250℃,传统的YSZ热障涂层已经不能满足这一发展需求,因此迫切需要开发温度更高、热导率更低的新型热障涂层。本文对La_2(Zr_(0.7)Ce_(0.3))_2O_7(以下简称LZ7C3)热障涂层在重型发电燃气轮机中的应用进行了初步验证。结果表明,LZ7C3涂层具有比常规YSZ热障涂层更低的热导率(0.79~0.48Wm~(-1)K~(-1),相对传统YSZ涂层下降30%以上),且在1250℃的高温火焰台架试验中表现出优良的热循环寿命( 7370次),具有良好的应用前景。  相似文献   

16.
A series of CexZr0.50-xAl0.50O1.75(0.05≤x≤0.45) mixed oxides with different Ce/Zr ratio were prepared by co-precipitation method and characterized by means of X-ray diffraction(XRD),Brunauer-Emmet Teller method(BET),temperature-programmed reduction(H2-TPR) and oxygen pulsing technique.The XRD results showed that all samples kept the single CeO2 cubic fluorite structure after calcination at 600 and 1000 oC for 5 h.The results of BET revealed that CexZr0.50-xAl0.50O1.75 with Ce/Zr molar ratio 1/1 exhibited higher specific surface area(212 m2/g) and larger pore volume(0.40 ml/g).For all aged samples,CZA with Ce/Zr molar ratio 3/7 presented the highest specific surface area(104 m2/g) and pore volume(0.34 ml/g).The compounds could still keep prominent structural and textural stability with excellent redox properties even calcined at 1000 oC.  相似文献   

17.
The blue-emitting phosphor NaBaPO4:Eu2+ was prepared by the combustion method. The phase structure and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Under the excita-tion wavelength of 360 nm, the emission spectrum exhibited only one blue band centering at 435 nm, which was ascribed to the 4f65d1→4f7 transition on Eu2+ ions. Compared with the phosphor obtained by solid-state reaction method, the relative emission intensity of sample ob-tained by combustion method increased slightly. The decay times and the temperature dependence luminescence intensities (25-300 oC) were discussed in order to further investigate the potential applications. Furthermore, Eu2+-doped NaBaPO4 phosphor showed higher thermally sta-ble luminescence comparable to commercially available Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor. All the investigated suggestions that Na-BaPO4:Eu2+ is a good phosphor candidate applied in white light emitting diode.  相似文献   

18.
Conventional cathode material (LiCoO2) was modified by coating with a thin layer of La2O3/Li2O/TiO2 for improving its performance for lithium ion battery. The morphology and structure of the modified cathode material was characterized by SEM, XRD, and Auger electron spectroscopy. The performance of the cells with the modified cathode material was examined, including the cycling stability, the diffusion coefficient under different voltages, and the C-rate discharge. The results showed that the cell composed of the coated cathode material discharged at a large current density, and possesses a stable cycle performance in the range from 3.0 to 4.4 V. It was explained that the rate of Li ion diffusion increased in the cell while using La2O3/Li2O/TiO2-coated LiCoO2 as the cathode and the coating layer may act as a faster ion conductor (La2O3/Li2O/TiO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号