首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《功能材料》2021,52(8)
首先通过溶剂热法制备了磁性Fe_3O_4纳米粒子,随后采用SiO_2对其进行包覆形成了Fe_3O_4@SiO_2核壳磁性纳米材料。通过XRD、SEM、TEM、磁性能分析和吸附性能分析等对Fe_3O_4@SiO_2核壳磁性纳米材料进行了表征。结果表明,合成的Fe_3O_4@SiO_2核壳磁性纳米材料具有Fe_3O_4和SiO_2两种晶型结构,SiO_2成功包覆在磁性Fe_3O_4纳米粒子上,SiO_2并没有对各组织的结构和成分产生较大影响;Fe_3O_4@SiO_2核壳磁性纳米材料的粒径在200~400 nm左右,且呈核壳式的结构,内层Fe_3O_4纳米粒子的颜色较深,外层SiO_2的颜色较浅;Fe_3O_4@SiO_2核壳磁性纳米材料在室温下的饱和磁化强度为76.31 A·m~2/kg,剩余磁化强度几乎为0;Fe_3O_4@SiO_2核壳磁性纳米材料对Cu(Ⅱ)的吸附在1 500 min时达到饱和,去除率最高为63%,最大吸附容量可达120 mg/g,其对Cu(Ⅱ)具有较好的吸附效果。  相似文献   

2.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

3.
目的采用一步法合成Fe_3O_4@C纳米粒子,分析其核壳结构的形成机理,并研究该纳米材料在磁性防伪油墨方面的应用。方法以FeCl_3·6H_2O为铁源,乙二醇为溶剂,葡萄糖为碳源,尿素为碱源,制备具有核壳结构的Fe_3O_4@C纳米粒子,分别采用X射线衍射、场发射扫描电镜、高分辨透射电镜、红外光谱仪和激光拉曼光谱等对其表面形貌和结构进行表征,并对所制备磁性油墨的粘度、抗摩擦性、细度和磁性进行测定。结果所制备的Fe_3O_4@C纳米材料是以平均粒径18 nm的Fe_3O_4为核,厚度为2 nm的无定形碳为壳层的单分散球形纳米粒子,葡萄糖是核壳结构形成的关键;该材料在室温下具有典型的软磁特性,饱和磁化强度为71.2 A·m~(-2)/kg,矫顽力为10 984.8 A/m,所制磁性油墨的墨层耐磨性参数为81%,印记有磁性,粘度为95 Pa·s,各项性能均符合磁性防伪油墨的要求。  相似文献   

4.
郭佳乐  赵齐仲  田方华  张垠  周超  杨森 《材料导报》2021,35(z1):297-301
交换偏置效应是指材料在外加磁场或不加磁场冷却后,磁滞回线沿磁场轴发生偏移的现象.它已成为研究信息存储技术的重要理论基础,在诸如磁传感器、磁存储读头以及磁自旋阀等电子器件中有着不可或缺的作用.因此,近年来引起了研究者极大的关注和研究.交换偏置效应广泛存在于纳米核壳结构的颗粒,多层膜体系以及块状合金中.但是,目前研究的具有交换偏置效应的绝大多数材料体系都在低温下(T≤50 K)才可以出现交换偏置效应,从而在很大程度上限制了交换偏置效应在实际中的应用.经过多年的探索和研究,在部分薄膜体系、纳米核壳结构和近补偿的亚铁磁体系得到了室温交换偏置效应.本文将对近年来室温下的交换偏置效应研究进行详细的整理和总结,分析了现阶段室温交换偏置效应研究中存在的问题及面临的挑战,希望能为室温交换偏置效应体系的研究提供参考.  相似文献   

5.
以自具微孔聚合物PIM-1为聚合物基质,采用溶剂挥发法制备了Fe_3O_4/PIM-1磁性混合基质膜,研究了不同Fe_3O_4添加量以及在分离过程中有无外加磁场对膜的O_2/N_2分离性能影响.结果表明,随着Fe_3O_4添加量的增加,膜的O_2渗透系数和O_2/N_2选择性均先增加后减少.磁化后混合基质膜O_2/N_2分离性能进一步提高,这可以归因于磁场和磁化粒子对O_2和N_2分子的耦合作用.当Fe_3O_4添加量为2%时,在压力为0.1 MPa、温度为25℃,磁场强度为56mT下,O_2渗透系数达到681Barrer,O_2/N_2选择性为3.32.  相似文献   

6.
通过加速腐蚀实验研究4种氧化铁皮组织对热轧带钢腐蚀性能的影响。实验结果表明,经过80周期的加速腐蚀后,组织由Fe_3O_4和FeO构成的氧化铁皮最耐腐蚀。组织由Fe_3O_4、共析产物(Fe_3O_4+Fe)构成的氧化铁皮耐腐蚀性能最差。在腐蚀初期,腐蚀产物在氧化铁皮表面的缺陷处优先形核,随后外锈层形成。随着外锈层逐渐长大,在氧化铁皮缺陷处形成的腐蚀产物的体积变大。氧化铁皮缺陷处会形成裂纹并扩展到基体,形成内锈层的腐蚀核。在腐蚀后期,外锈层厚度继续长大,结合面处的腐蚀核长大形成内锈层,这时氧化铁皮失去保护作用。  相似文献   

7.
采用纤维素水凝胶包覆Fe_3O_4颗粒,制备得到核壳结构的羧甲基纤维素聚丙烯包覆Fe_3O_4类Fenton纳米催化剂(CMC-co-AA/Fe_3O_4),并应用于降解偶氮染料酸性大红GR。考察了体系pH值、催化剂用量、染料初始浓度等参数对降解效果的影响。SEM和FT-IR分析结果表明水凝胶成功地包覆在Fe_3O_4颗粒表面,且壳层厚度为20~30nm。XRD分析显示,包覆层不影响纳米Fe_3O_4的晶型结构,纳米催化剂在使用过程中仍保持Fe_3O_4磁响应性能,能够有效地分离回收。相比传统的Fe_3O_4纳米催化剂,包覆型CMC-co-AA/Fe_3O_4纳米催化剂水溶液显示出了较好的均一分散性。且当pH3直至中性条件下,此时传统未包覆的Fe_3O_4纳米催化剂对酸性大红GR的降解率为0,而CMC-co-AA/Fe_3O_4纳米催化剂的降解率仍能维持36%,说明了水凝胶壳层结构赋予CMC-co-AA/Fe_3O_4纳米催化剂较宽的pH适用范围。重复试验表明,该纳米催化剂在循环使用四次后,对染料的降解率仍能保持98%左右。  相似文献   

8.
以自制的氧化石墨烯、BiOCl/Fe_3O_4为原料,以水合肼为还原剂,制备出Fe_3O_4/石墨烯(G)-BiOCl复合光催化剂。运用X射线衍射、透射电镜和扫描电镜对Fe_3O_4/G-BiOCl的组成和形貌进行了表征,运用振动样品磁强计对其磁性进行了测试;对照研究了Fe_3O_4/G-BiOCl、BiOCl/Fe_3O_4和纯BiOCl对罗丹明B的光催化降解能力以及Fe_3O_4/G-BiOCl光催化活性的循环稳定性。结果表明:Fe_3O_4/G-BiOCl复合光催化剂分布均匀,具有超顺磁性;Fe_3O_4/G-BiOCl的光催化性能优于纯BiOCl和BiOCl/Fe_3O_4,可回收再利用,并具有良好的循环稳定性。  相似文献   

9.
本文利用水热法合成Fe_3O_4纳米粒子,并通过层层自组装的方法合成以Fe_3O_4为核、金属-有机骨架(metalorganic frameworks,MOFs)为壳的多功能核-壳磁性微球Fe_3O_4@HKUST。通过FT-IR、XRD、SEM、TEM等手段对Fe_3O_4@HKUST进行表征,并以该复合材料为MSPE的吸附剂用于螺旋藻中的PAHs的富集。同时本文还优化了吸附剂用量、萃取时间、洗脱剂种类以及洗脱时间,在最佳条件下,方法定量限为0.031-0.49μg/L,回收率为75.4%-97.9%。  相似文献   

10.
以化学共沉淀法制备出Fe_3O_4磁性纳米粒子,通过壳聚糖(CS)修饰制备得Fe_3O_4/CS磁性微球,再将Fe_3O_4/CS磁性微球与表面富含羧基的碳量子点(CQDs)连接,合成了以碳量子点为荧光材料的磁性荧光双功能纳米微球Fe_3O_4/CS@CQDs。经过红外光谱仪(FT-IR)、X射线衍射仪(XRD)、荧光分光光度计、振动样品磁强计(VSM)、荧光显微镜及透射电子显微镜(TEM)对该纳米材料表征。结果表明:双功能纳米微球Fe_3O_4/CS@CQDs饱和磁化强度达到13.66emu/g,分散性良好,粒径约为45nm,具有良好的荧光性能及磁响应性,有望取代以半导体量子点作为荧光材料的磁性复合材料,在生物医学等方面得到广泛应用。  相似文献   

11.
本工作采用无皂乳液法合成出具有核壳结构的四氧化三铁@聚(苯乙烯-co-十八醇马来酸聚乙二醇双酯)(Fe_3O_4@P(St-co-OBEG))磁性聚合物复合微球,并以此为载体制备Ag/Fe_3O_4@P(St-co-OBEG)和Pt/Fe_3O_4@P(St-co-OBEG)两种复合催化剂。借助透射电镜和动态光散射表征复合催化剂的形貌和尺寸,并通过紫外可见吸光光度法测试它们的催化性能。实验结果表明两种复合催化剂对硝基苯和4-硝基苯酚的硝基加氢还原反应均具有良好的催化性能。相比Ag/Fe_3O_4@P(St-co-OBEG),Pt/Fe_3O_4@P(St-co-OBEG)催化活性更高,这可能与Pt/Fe_3O_4@P(St-co-OBEG)催化剂中Pt纳米粒子本身的高催化活性和在磁性聚合物载体上较大的比表面积有关,还有可能归因于Pt纳米粒子在Fe_3O_4@P(St-co-OBEG)上的分布更均匀。  相似文献   

12.
采用浓硫酸/浓硝酸(体积比3∶1)混酸改性、超声混融和化学水热法配制负载Fe_3O_4的多壁碳纳米管(MWCNTs),将酸化改性的MWCNTs/Fe_3O_4与纳米级SiO_2以适当比例混合超声研磨所得添加剂MWCNTs/Fe_3O_4/SiO_2与聚氯乙烯(PVC)、聚乙二醇(PEG)、N,N-二甲基乙酰胺(DMAC)共混制膜,获得MWCNTs/Fe_3O_4/SiO_2/PVC共混膜。通过对膜的纯水通量、溶胀度、孔隙率、平均孔径和牛血清蛋白(BSA)截留率进行比较,结果发现:MWCNTs/Fe_3O_4/SiO_2/PVC的接触角为68.1°,纯水通量为111L·m2/h,BSA截留率为73.9%,皆较PVC膜有所提高,且膜的抗张强度(2.09MPa)和延伸率(17.01%)较MWCNTs/Fe_3O_4/PVC膜有所提高。  相似文献   

13.
制备了Fe_3O_4包覆碳纳米管(Fe_3O_4-CNT)水基磁性纳米流体,采用透射电子显微镜(TEM)表征其分散性,静置观察其稳定性,并对磁场中Fe_3O_4-CNT磁性纳米流体的热导率进行了研究。结果表明,Fe_3O_4-CNT磁性纳米流体能在较高磁场强度的磁场中稳定存在;随着磁场强度的增加,Fe_3O_4-CNT纳米颗粒成链和CNT定向对Fe_3O_4-CNT磁性纳米流体热导率增加先后起主导作用;由于碳纳米管的各向异性,在一定磁场方向下,Fe_3O_4-CNT形成的导热网链使磁性纳米流体热导率显著增加;Fe_3O_4包覆在碳纳米管上由于碳纳米管具有较大的长径比,能够有效的降低Fe_3O_4-CNT在磁场中链的长度以及成链速度,进一步提高了基液的热导率。  相似文献   

14.
采用超声协助悬浮聚合法以Ni(Ⅱ)离子为模板制备了氨基功能化纳米Fe_3O_4-离子印迹聚(甲基丙烯酸甲酯(MMA)-3-(2-氨基乙基胺)-2-甲基丙烯酸羟丙酯(HPMA)-二乙烯基苯(DVB))磁性复合材料(Fe_3O_4@ion imprinted poly(MMA-HPMA-DVB),Fe_3O_4@IIP(MMA-HPMA-DVB))。通过EA、XRD、FTIR、TEM、VSM等手段对Fe_3O_4@IIP(MMA-HPMA-DVB)的组成、结构、形貌、磁性等进行了表征,并研究了其吸附水中Ni(Ⅱ)的性能。结果表明:合成的Fe_3O_4@IIP(MMA-HPMA-DVB)平均粒径为100nm,饱和磁化强度为43.8emu/g;共聚单体甲基丙烯酸甲酯(MMA)的羰基通过氢键与Fe_3O_4表面羟基结合,有利于Fe_3O_4@IIP(MMA-HPMA-DVB)的核-壳结构的形成与稳定;Fe_3O_4@IIP(MMA-HPMA-DVB)对Ni(Ⅱ)的吸附受溶液pH值影响较小;等温吸附线符合Langmuir模型,饱和吸附量(q_(m,c)=500 mg/g,q_(m,e)=478 mg/g)高于非离子印迹材料(Fe_3O_4@none-ion imprinted poly(MMA-HPMA-DVB),Fe_3O_4@NIP(MMA-HPMA-DVB)),q_(m,c)=90.9mg/g,q_(m,e)=83.8mg/g)。吸附过程可在5min内达到平衡,符合准二级动力学模型。Fe_3O_4@IIP(MMA-HPMA-DVB)能高选择性地有效吸附水中Ni(Ⅱ),对Ni(Ⅱ)的印迹因子(α)为1.9,对几种常见共存离子的选择性因子(β)7.7,是潜在的高选择性吸附和回收Ni(Ⅱ)的功能材料。  相似文献   

15.
通过分散共聚制得了聚(丙烯酸-丙烯腈-苯乙烯)(PAAS)三元共聚物微球,调整聚合反应介质乙醇与水的体积比及分散剂的用量,可将PAAS微球的粒径控制在230~680nm的范围内;扫描电子显微镜观察发现,所得微球粒径具有较好的单分散性.以该PAAS共聚物微球为载体,在二价和三价铁盐存在的条件下控制体系的pH,经共沉淀将Fe_3O_4纳米颗粒有效沉积在微球表面,得到了以PAAS为核,Fe_3O_4为壳的核-壳结构磁性复合微球;热重分析结果表明,复合微球上Fe_3O_4的含量达41%,对磁场具有明显的响应性.  相似文献   

16.
采用浓硫酸(H_2SO_4)、浓硝酸(HNO_3)质量配合比为3∶1混酸改性、超声混融和化学水热法配置负载四氧化三铁(Fe_3O_4)的多壁碳纳米管(MWCNTs)(MWCNTs/Fe_3O_4),将酸化改性的MWCNTs/Fe_3O_4与聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、N,N-二甲基乙酰胺(DMAC)共混制膜,制得MWCNTs/Fe_3O_4/PVDF共混膜。通过对膜的膜表断面、接触角、纯水通量、孔隙率、平均孔径和有关物质的截留率进行测试。结果发现,MWCNTs/Fe_3O_4/PVDF共混膜的接触角为56.65°,纯水通量为152.866L·m~2/h,对腐殖酸(HA)、海藻酸钠(SA)、双酚A(BPA)、牛血清蛋白(BSA)的截留率分别为59.71%、71.16%、59.10%、76.00%,皆较纯PVDF膜有所提高,MWCNTs/Fe_3O_4的添加提高了PVDF膜的总体性能。  相似文献   

17.
采用水热法制得粒径为150~300 nm、分散性良好的Fe_3O_4磁性内核颗粒,经APTES对Fe_3O_4进行氨基化修饰后,用NaBH_4原位还原H_2PtCl_6制得Fe_3O_4@Pt核壳结构的DMFC阳极催化剂,对其进行TEM、XRD、XPS、EDS和催化活性及稳定性表征,结果表明:制得的Fe_3O_4@Pt颗粒表面主要由Pt组成,形成了完整包覆一层Pt的Fe_3O_4@Pt粒子,颗粒粒径为200~300 nm,Fe与Pt的原子比近似为3:1;Fe_3O_4@Pt具有良好的稳定性,在循环100圈后,Fe_3O_4@Pt修饰的玻碳电极在新配制的0.5 mol/L H_2SO_4+1 mol/L CH_3OH溶液中循环第101圈的峰电流密度是第一圈的94.51%;纯Pt的峰电流密度仅为Fe_3O_4@Pt的90.73%,Fe_3O_4和Pt之间存在电荷传递,从而提高了Fe_3O_4@Pt的催化活性。因此Fe_3O_4@Pt有望取代Pt作为DMFC的阳极催化剂。  相似文献   

18.
本文以葡萄糖作为碳源,采用溶剂热法进行原位碳包覆合成了Fe_2O_3/ZnFe_2O_4/C材料,研究了材料的结构及电化学性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安扫描(CV)和恒流充放电技术对材料结构及电化学性能进行了表征。结果表明,采用此法合成的Fe_2O_3/ZnFe_2O_4/C复合材料呈现多孔结构,粒径约为250nm,经历40次循环后材料的可逆容量依然能保持在645.7mAh/g,较未包覆碳材料的电极提高了19.0%,其可逆容量和循环稳定性能得到了显著提升。  相似文献   

19.
用氨水做催化剂,利用正硅酸乙酯(TEOS)的溶胶-凝胶化过程和间苯二酚与甲醛的缩聚反应一步合成核壳材料;通过在N_2中碳化并在NaOH溶液中刻蚀SiO_2制得蛋黄-蛋壳型结构纳米微球;最后负载Pd得到磁性碳纳米复合材料Fe_3O_4@C-Pd。采用透射电子显微镜、X射线粉末衍射仪、紫外-可见分光光度计以及振动样品磁强计等手段对所制纳米材料的形貌、组成结构、晶体结构和磁性能进行了分析表征。将Fe_3O_4@C-Pd作为催化剂用于对亚甲基蓝(MB)的催化还原,结果表明其具有良好的催化活性,重复使用4次催化活性几乎保持不变。  相似文献   

20.
不同结构的Fe_3O_4-碳复合材料是锂离子电池负极材料领域的研究热点之一。合理设计复合材料的纳米结构有助于电池性能的提升。综述了核壳结构、中空球结构、1D线形结构、2D片状结构、3D多孔结构等不同结构的Fe_3O_4-碳复合材料的制备方法及其电化学性能,分析了不同形貌结构对复合材料性能的影响,并对将来进一步的开发利用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号