首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of the Ricci energy. If convergence to the global optimum is enforced, the conformality may be sacrificed. This work introduces a novel method to generalize the traditional discrete Ricci flow. The generalized Ricci flow is more flexible, more robust and conformal for meshes with low quality triangulations. Conventional method is based on circle packing, which requires two circles on an edge intersect each other at an acute angle. Generalized method allows the two circles either intersect or separate from each other. This greatly improves the flexibility and robustness of the method. Furthermore, the generalized Ricci flow preserves the convexity of the Ricci energy, this ensures the uniqueness of the global optimum. Therefore the algorithm won't get stuck at the local optimum. Generalized discrete Ricci flow algorithms are explained in details for triangle meshes with both Euclidean and hyperbolic background geometries. Its advantages are demonstrated by theoretic proofs and practical applications in graphics, especially surface parameterization.  相似文献   

2.
《Graphical Models》2014,76(5):321-339
Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a heat diffusion process and eventually becomes constant everywhere. Ricci flow has demonstrated its great potential by solving various problems in many fields, which can be hardly handled by alternative methods so far.This work introduces the unified theoretic framework for discrete surface Ricci flow, including all the common schemes: tangential circle packing, Thurston’s circle packing, inversive distance circle packing and discrete Yamabe flow. Furthermore, this work also introduces a novel schemes, virtual radius circle packing and the mixed type schemes, under the unified framework. This work gives explicit geometric interpretation to the discrete Ricci energies for all the schemes with all back ground geometries, and the corresponding Hessian matrices.The unified frame work deepens our understanding to the discrete surface Ricci flow theory, and has inspired us to discover the new schemes, improved the flexibility and robustness of the algorithms, greatly simplified the implementation and improved the efficiency. Experimental results show the unified surface Ricci flow algorithms can handle general surfaces with different topologies, and is robust to meshes with different qualities, and is effective for solving real problems.  相似文献   

3.
Pairwise dissimilarity representations are frequently used as an alternative to feature vectors in pattern recognition. One of the problems encountered in the analysis of such data is that the dissimilarities are rarely Euclidean, while statistical learning algorithms often rely on Euclidean dissimilarities. Such non-Euclidean dissimilarities are often corrected or a consistent Euclidean geometry is imposed on them via embedding. This paper commences by reviewing the available algorithms for analysing non-Euclidean dissimilarity data. The novel contribution is to show how the Ricci flow can be used to embed and rectify non-Euclidean dissimilarity data. According to our representation, the data is distributed over a manifold consisting of patches. Each patch has a locally uniform curvature, and this curvature is iteratively modified by the Ricci flow. The raw dissimilarities are the geodesic distances on the manifold. Rectified Euclidean dissimilarities are obtained using the Ricci flow to flatten the curved manifold by modifying the individual patch curvatures. We use two algorithmic components to implement this idea. Firstly, we apply the Ricci flow independently to a set of surface patches that cover the manifold. Second, we use curvature regularisation to impose consistency on the curvatures of the arrangement of different surface patches. We perform experiments on three real world datasets, and use these to determine the importance of the different algorithmic components, i.e. Ricci flow and curvature regularisation. We conclude that curvature regularisation is an essential step needed to control the stability of the piecewise arrangement of patches under the Ricci flow.  相似文献   

4.
Background modeling on tensor field has recently been proposed for foreground detection tasks. Taking into account the Riemannian structure of the tensor manifold, recent research has focused on developing parametric methods on the tensor domain, e.g. mixture of Gaussians (GMM). However, in some scenarios, simple parametric models do not accurately explain the physical processes. Kernel density estimators (KDEs) have been successful to model, on Euclidean sample spaces, the nonparametric nature of complex, time varying, and non-static backgrounds. Founded on a mathematically rigorous KDE paradigm on general Riemannian manifolds recently proposed in the literature, we define a KDE specifically to operate on the tensor manifold in order to nonparametrically reformulate the existing tensor-based algorithms. We present a mathematically sound framework for nonparametric modeling on tensor field to foreground detection. We endow the tensor manifold with two well-founded Riemannian metrics, i.e. Affine-Invariant and Log-Euclidean. Theoretical aspects are presented and the metrics are compared experimentally. By inducing a space with a null curvature, the Log-Euclidean metric considerably simplifies the scheme, from a practical point of view, while maintaining the mathematical soundness and the excellent segmentation performance. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this framework.  相似文献   

5.
This article provides an overview of various notions of shape spaces, including the space of parametrized and unparametrized curves, the space of immersions, the diffeomorphism group and the space of Riemannian metrics. We discuss the Riemannian metrics that can be defined thereon, and what is known about the properties of these metrics. We put particular emphasis on the induced geodesic distance, the geodesic equation and its well-posedness, geodesic and metric completeness and properties of the curvature.  相似文献   

6.
A Riemannian Framework for Tensor Computing   总被引:22,自引:0,他引:22  
Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc. We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve.  相似文献   

7.
In geometric modeling and processing, computer graphics and computer vision, smooth surfaces are approximated by discrete triangular meshes reconstructed from sample points on the surfaces. A fundamental problem is to design rigorous algorithms to guarantee the geometric approximation accuracy by controlling the sampling density. This paper gives explicit formulae to the bounds of Hausdorff distance, normal distance and Riemannian metric distortion between the smooth surface and the discrete mesh in terms of principle curvature and the radii of geodesic circum-circle of the triangles. These formulae can be directly applied to design sampling density for data acquisitions and surface reconstructions. Furthermore, we prove that the meshes induced from the Delaunay triangulations of the dense samples on a smooth surface are convergent to the smooth surface under both Hausdorff distance and normal fields. The Riemannian metrics and the Laplace–Beltrami operators on the meshes are also convergent to those on the smooth surfaces. These theoretical results lay down the foundation for a broad class of reconstruction and approximation algorithms in geometric modeling and processing.Practical algorithms for approximating surface Delaunay triangulations are introduced based on global conformal surface parameterizations and planar Delaunay triangulations. Thorough experiments are conducted to support the theoretical results.  相似文献   

8.
This paper presents an improved Euclidean Ricci flow method for spherical parameterization. We subsequently invent a scale space processing built upon Ricci energy to extract robust surface features for accurate surface registration. Since our method is based on the proposed Euclidean Ricci flow, it inherits the properties of Ricci flow such as conformality, robustness and intrinsicalness, facilitating efficient and effective surface mapping. Compared with other surface registration methods using curvature or sulci pattern, our method demonstrates a significant improvement for surface registration. In addition, Ricci energy can capture local differences for surface analysis as shown in the experiments and applications.  相似文献   

9.
Systematically generalizing planar geometric algorithms to manifold domains is of fundamental importance in computer aided design field. This paper proposes a novel theoretic framework, geometric structure, to conquer this problem. In order to discover the intrinsic geometric structures of general surfaces, we developed a theoretic rigorous and practical efficient method, Discrete Variational Ricci flow.Different geometries study the invariants under the corresponding transformation groups. The same geometry can be defined on various manifolds, whereas the same manifold allows different geometries. Geometric structures allow different geometries to be defined on various manifolds, therefore algorithms based on the corresponding geometric invariants can be applied on the manifold domains directly.Surfaces have natural geometric structures, such as spherical structure, affine structure, projective structure, hyperbolic structure and conformal structure. Therefore planar algorithms based on these geometries can be defined on surfaces straightforwardly.Computing the general geometric structures on surfaces has been a long lasting open problem. We solve the problem by introducing a novel method based on discrete variational Ricci flow.We thoroughly explain both theoretical and practical aspects of the computational methodology for geometric structures based on Ricci flow, and demonstrate several important applications of geometric structures: generalizing Voronoi diagram algorithms to surfaces via Euclidean structure, cross global parametrization between high genus surfaces via hyperbolic structure, generalizing planar splines to manifolds via affine structure. The experimental results show that our method is rigorous and efficient and the framework of geometric structures is general and powerful.  相似文献   

10.
We propose a framework for 3D geometry processing that provides direct access to surface curvature to facilitate advanced shape editing, filtering, and synthesis algorithms. The central idea is to map a given surface to the curvature domain by evaluating its principle curvatures, apply filtering and editing operations to the curvature distribution, and reconstruct the resulting surface using an optimization approach. Our system allows the user to prescribe arbitrary principle curvature values anywhere on the surface. The optimization solves a nonlinear least‐squares problem to find the surface that best matches the desired target curvatures while preserving important properties of the original shape. We demonstrate the effectiveness of this processing metaphor with several applications, including anisotropic smoothing, feature enhancement, and multi‐scale curvature editing.  相似文献   

11.
It is shown how the methods of Riemannian and Finslerian geometry may be used in thermodynamics of equilibrium and nonequilibrium states. In both cases the Riemannian structure on the spaces of thermodynamic parameters is defined by means of the relative information (entropy). Thermodynamic meaning of the Riemannian scalar curvature is then interpreted in terms of stability of the considered systems. For nonequilibrium systems the time derivative of the relative information leads to the Finslerian structure. It is shown how a homogenization procedure of Rund leads to the Finslerian metric of the Kropina type. Three types of the Finslerian curvature tensors connected with the Cartan connection are considered for two-dimensional spaces. In particular, the so-called horizontal curvature is considered in detail. It turns out that in thermodynamic spaces Cartan connection coincides with the Berwald connection. Thermodynamic meaning of the Finslerian scalar curvatures is not clear since they vanish for two-dimensional spaces.Work supported by The State Committee for Scientific Research, project KBN 2 0412 91 01.  相似文献   

12.
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by \(2\times 2\) density matrices, we determine a particular Riemannian metric for a state \(\rho \) and show that if \(\rho \) gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.  相似文献   

13.
Many algorithms in machine learning rely on being given a good distance metric over the input space. Rather than using a default metric such as the Euclidean metric, it is desirable to obtain a metric based on the provided data. We consider the problem of learning a Riemannian metric associated with a given differentiable manifold and a set of points. Our approach to the problem involves choosing a metric from a parametric family that is based on maximizing the inverse volume of a given data set of points. From a statistical perspective, it is related to maximum likelihood under a model that assigns probabilities inversely proportional to the Riemannian volume element. We discuss in detail learning a metric on the multinomial simplex where the metric candidates are pull-back metrics of the Fisher information under a Lie group of transformations. When applied to text document classification the resulting geodesic distance resemble, but outperform, the tfidf cosine similarity measure.  相似文献   

14.
We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.  相似文献   

15.
Pruning using parameter and neuronal metrics   总被引:1,自引:0,他引:1  
In this article, we introduce a measure of optimality for architecture selection algorithms for neural networks: the distance from the original network to the new network in a metric defined by the probability distributions of all possible networks. We derive two pruning algorithms, one based on a metric in parameter space and the other based on a metric in neuron space, which are closely related to well-known architecture selection algorithms, such as GOBS. Our framework extends the theoretically range of validity of GOBS and therefore can explain results observed in previous experiments. In addition, we give some computational improvements for these algorithms.  相似文献   

16.
We address the problem of metric learning for multi-view data. Many metric learning algorithms have been proposed, most of them focus just on single view circumstances, and only a few deal with multi-view data. In this paper, motivated by the co-training framework, we propose an algorithm-independent framework, named co-metric, to learn Mahalanobis metrics in multi-view settings. In its implementation, an off-the-shelf single-view metric learning algorithm is used to learn metrics in individual views of a few labeled examples. Then the most confidently-labeled examples chosen from the unlabeled set are used to guide the metric learning in the next loop. This procedure is repeated until some stop criteria are met. The framework can accommodate most existing metric learning algorithms whether types-of-side-information or example-labels are used. In addition it can naturally deal with semi-supervised circumstances under more than two views. Our comparative experiments demonstrate its competiveness and effectiveness.  相似文献   

17.
Congenital Hand Deformities (CHD) usually occurred between the fourth and the eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affects the brain as time passes. In recent years, CHD have gained increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on the brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with the surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing the distal part of the upper limb.  相似文献   

18.
We propose a new design method of asymptotic observers for a class of nonlinear mechanical systems: Lagrangian systems with configuration (position) measurements. Our main contribution is to introduce a state (position and velocity) observer that is invariant under any changes of the configuration coordinates. The observer dynamics equations, as the Euler-Lagrange equations, are intrinsic. The design method uses the Riemannian structure defined by the kinetic energy on the configuration manifold. The local convergence is proved by showing that the Jacobian of the observer dynamics is negative definite (contraction) for a particular metric defined on the state-space, a metric derived from the kinetic energy and the observer gains. From a practical point of view, such intrinsic observers can be approximated, when the estimated configuration is close to the true one, by an explicit set of differential equations involving the Riemannian curvature tensor. These equations can be automatically generated via symbolic differentiations of the metric and potential up to order two. Numerical simulations for the ball and beam system, an example where the scalar curvature is always negative, show the effectiveness of such approximation when the measured positions are noisy or include high frequency neglected dynamics.  相似文献   

19.
20.
Determining a proper distance metric is often a crucial step for machine learning. In this paper, a boosting algorithm is proposed to learn a Mahalanobis distance metric. Similar to most boosting algorithms, the proposed algorithm improves a loss function iteratively. In particular, the loss function is defined in terms of hypothesis margins, and a metric matrix base-learner specific to the boosting framework is also proposed. Experimental results show that the proposed approach can yield effective Mahalanobis distance metrics for a variety of data sets, and demonstrate the feasibility of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号