首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文考虑二阶常微分方程三点边值问题{u″(t)+h(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=λu(η),其中η∈[0,1),参数λ∈[0,1),函数f∈C([0,∞),[0,∞))满足f(s)0,s0,h∈C([0,1],[0,∞))在[0,1]的任意子区间内不恒为零.在满足条件f0=0,f∞=∞时,本文讨论了该边值问题解所构成的连通分支随着参数λ在[0,1]内的变化而变化的情形,建立了正解的全局结构.主要结果的证明基于锥上的不动点指数定理以及解集连通性质.  相似文献   

2.
研究了一阶周期问题u'(t)=a(t)g(u(t)u(t)-b(t)f(u(t))+s,t∈R,u(t)=u(t+T)解的个数与参数s(s∈R)的关系,其中a∈C(R,[0,∞)),b∈C(R,(0,∞))均为T周期函数.∫0Ta(t)dt0;_f,g∈C(R,[0,∞)).当u0时,f(u)0,当u≥0时,0l≤g(u)L∞.运用上下解方法及拓扑度理论,获得结论:存在常数s_1∈R,当ss_1时,该问题没有周期解;s=s_1时,该问题至少有一个周期解;ss_1时,该问题至少有两个周期解.  相似文献   

3.
考虑二阶非线性泛函微分方程y"(t)+a(t)f(y(t))+b(t)y(t-τ)+c(t)y'(t)=0 (*)y"(t)+a(t)f(y(t))+b(t)g(y(t-τ))+c(t)y'(t)=0, (**)其中a∈C1([0,∞,(0,∞)),b∈C([0,∞),R),c∈C([0,∞),(0,∞)),f,g∈C(R,R)且存在常数λ>0,μ>0,使当u≠0时有u/f(u)≥λ,g2(u)≤μu2.文章得到方程(**)所有解有界的一个充分条件为,存在函数h∈C1([0,∞),(0,∞)),使得h(t)≥a't+2a(t)c(t)/b2(t),h'(t)≤0,∫∞h(s)ds<∞.  相似文献   

4.
用比较原理并结合单调迭代技巧的上下解方法考虑如下非线性分数阶微分方程问题:{D~αu(t)=f(t,u(t),Dαu(t)),t∈(0,T],t~(1-α)u(t)t=0=u_0,证明了该问题解的存在性.其中:0T∞;f∈C([0,T]×R×R,R);u0∈R;D~α是Riemann-Liouville分数阶导数,且0α≤1.  相似文献   

5.
运用上下解方法和拓扑度理论研究了一阶常微分方程多点边值问题{u'(t)=f(t,u(t)),t∈[0,T],u(0)+Σm k=1a_ku(t_k)=c多个解的存在性,其中c∈R,t_k(k=1,2,3,…,m)满足0t_1t_2…t_mT,a_k0均为给定常数,并且满足1+Σm k=1a_k0,f∈C([0,T]×R,R)。实例说明了结果的正确性。  相似文献   

6.
本文研究了非线性二阶差分方程Dirichlet边值问题Δ~2u(t-1)+λa(t)f(u(t))=0,t∈[1,T]_Z,u(0)=u(T+1)=0正解的存在性,其中Δu(t-1)=u(t)-u(t-1),T2是一个整数,λ是一个正参数,f:■连续且f(0)0,权函数a:■允许变号.主要结果的证明基于Leray-Schauder不动点定理.  相似文献   

7.
研究了一阶周期边值问题{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T)正解的个数与参数λ的关系, 其中λ>0, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))以及f=limu→∞ inf(f(t,u))/u=∞对任意的t∈[0,T]一致成立。 运用上下解方法及拓扑度理论, 获得存在λ*>0, 当λ>λ*时, 该问题不存在正解, λ=λ* 时, 该问题恰有一个正解; 0<λ<λ* 时, 该问题至少存在两个正解。  相似文献   

8.
运用区间分歧理论与拓扑度理论得到了二阶差分方程周期边值问题Δ2u(t-1)-q(t)u(t)+λf(t,u(t))=0,t∈T,u(0)=u(T),u(1)=u(T+1)正解集的全局结构,其中T>1是一个整数,T={1,2,…,T},(^T)={1,2,…,T+1},λ∈[0,∞)是一个参数;q∈C((^T),[0,∞...  相似文献   

9.
研究了二阶Neumann边值问题{u″+f(t,u,u’)=s,t∈(0,1),u’(0)=u’(1)=0解的个数与参数s的关系,其中f∈C([0,1]×R2,R),s∈R。运用上下解方法及拓扑度理论,获得存在常数s1∈R,当ss1时,该问题至少有两个解。  相似文献   

10.
讨论含有两个参数的非线性常微分方程四阶两点边值问题u′′′′(t)+λ(αu(t)-βu″(t))+g(t,u′(t),u″(t))=h(t),t∈(0,1);u(0)=u(1)=u″(0)=u″(1)=0解的存在性,这里λ∈R,g:[0,1]×R2→R为连续函数,h∈L1(0,1),参数α,β满足条件(C1)(α,β)∈(0,+∞)×(0,+∞).  相似文献   

11.
主要研究了非线性分数阶微分方程边值问题{D_0~α+u(t)=λf(t,u(t),D_0~β+u(t)),0t1;u(0)=u′(0)=u(1)=0解的存在性和唯一性.其中:0λ1,2α≤3,0β≤α-1,f∈C([0,1]×R~2,R),D_0~α+与D_0~β+是标准的Riemann-Liouville微分.利用Schauder不动点定理给出了解的存在性,利用Banach压缩映像原理得到了解的唯一性.  相似文献   

12.
研究带非线性边界条件的一阶微分方程边值问题{u'(t)-a(t)u(t)+λb(t)f(u(t))=0,t∈[0,1],u(1)-u(0)=λg(u(1))正解的存在性及多解性,其中λ0为参数,a,b∈C([0,+∞),(0,+∞)),f∈C([0,+∞),(0,+∞))且f_∞=(f(u))/u=∞,g∈C([0,∞),(0,+∞))且非增,主要结果的证明基于上下解方法和拓扑度理论.  相似文献   

13.
在共振条件m∑k=1a_k=1下,运用紧向量场方程的解集连通理论对二阶多点边值问题u″(t)=f(t,u(t))+e(t),t∈[0,1],u'(0)=0,u(1)=m∑k=1a_ku(η_k)建立了解的存在性和多解性结果。其中,f:[0,1]×R→R连续,e∈C([0,1],R),0η_1η_2…η_m1,a_k0(k=1,2,…,m)。  相似文献   

14.
研究一类非齐次分数阶微分方程边值问题{-d/dt(1/2_0D_t~(-β)(u′(t))+1/2_tD_T~(-β)(u′(t)))=λh(t)+▽F(t,u(t)),a.e.t∈[0,T],u(0)=0,u(T)=0,烅烄烆其中,λ0,h∈L~2([0,T],R~N)且h(t)■0.利用山路引理和Ekeland变分原理,得到上述问题至少存在2个非平凡解.  相似文献   

15.
本文获得了二阶周期边值问题{u″(t)-k2u+λa(t)f(u)=0,t∈[0,2π],u(0)=u(2π),u′(0)=u′(2π)正解的全局结构,其中k0为常数,λ是正参数,a∈C([0,2π],[0,∞))且在[0,2π]的任何子区间内a(t)≠0,f∈C([0,∞),[0,∞)).主要结果的证明基于Rabinowitz全局分歧理论和逼近方法.  相似文献   

16.
利用锥不动点定理得到离散非线性三阶三点特征值问题的正解烄Δ~3u(t-1)=λa(t)f(t,u(t)),t∈[1,T]_Z u(0)=Δu(η)=Δ~2u(T)=0,这里η∈[[T~2+T/3T+2]+1,T]_Z,λ0是一个参数.  相似文献   

17.
随着泛函微分方程理论的发展以及其在物理、力学、自动控制理论、生物学、经济学等众多学科中的应用,时滞微分方程边值问题成为关注的一个热点.运用锥上的不动点指数理论研究了四阶时滞微分方程边值问题{u(4)(t)+au″(t)-bu(t)=f(t,ut),t∈[0,1],u(t)=Ф(t),t∈[-τ,0],u(0)=u(1)=u″(0)=u″(1)=0正解的存在性,其中,f:[0,1]×C+→[0,+∞)连续,C+={φ∈C|φ(θ)≥0,θ∈[-τ,0]},Ф(t)∈C([-τ,10],[0,+∞)),Ф(0)=0,对t∈[0,1],ut(θ)=u(t+θ),θ∈[-τ,0],0≤τ,且a,b∈R,满足a2π2,b-a2/4,b/π4+a/π21.所得结果推广和改进了现有结果.  相似文献   

18.
运用Leray-Schauder不动点定理讨论了三阶常微分方程边值问题{u''(t)=λa(t)f(u(t)),t∈(0,1)αu'(0)-βu″(0)=0,u(1)=u'(1)=0正解的存在性,其中λ0是参数,a∈C([0,1],R),f:R+→R连续且f(0)0,α,β≥0,α+β0.  相似文献   

19.
考虑非线性二阶常微分方程边值问题:{u″+f(t,u)=h(t),t∈(0,1),u(0)=u(1)=0,得到了当f(t,s)/s在某些"较小的集合"上超出特征值区间[λ_(k0),λ_(k0+1)]时,该问题解的存在唯一性结果。  相似文献   

20.
运用上下解方法及不动点指数理论,在非齐次边界条件下讨论了三阶三点边值问题u″′(t)+a(t)f(u(t))=0,t∈(0,1),u(0)=λ1,u’(0)=λ2,u’(1)-αu’(η)=λ3正解的存在性和不存在性,并且给出了该问题至少存在一个正解,两个正解及无正解时参数(λ1,λ2,λ3)的最优取值范围。其中(λ1,λ2,λ3)∈R3+\{(0,0,0)}为参数,η∈(0,1),α∈0,1[)η为常数,a∈C((0,1),[0,+∞)),f∈C([0,+∞),[0,+∞))。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号