首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For avoiding obstacles and joint physical constraints of robot manipulators, this paper proposes and investigates a novel obstacle avoidance scheme (termed the acceleration-level obstacle-avoidance scheme). The scheme is based on a new obstacle-avoidance criterion that is designed by using the gradient neural network approach for the first time. In addition, joint physical constraints such as joint-angle limits, joint-velocity limits and joint-acceleration limits are incorporated into such a scheme, which is further reformulated as a quadratic programming (QP). Two important ‘bridge’ theorems are established so that such a QP can be converted equivalently to a linear variational inequality and then equivalently to a piecewise-linear projection equation (PLPE). A numerical algorithm based on a PLPE is thus developed and applied for an online solution of the resultant QP. Four path-tracking tasks based on the PA10 robot in the presence of point and window-shaped obstacles demonstrate and verify the effectiveness and accuracy of the acceleration-level obstacle-avoidance scheme. Besides, the comparisons between the non-obstacle-avoidance and obstacle-avoidance results further validate the superiority of the proposed scheme.  相似文献   

2.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

3.
In this paper, a new algorithm for convex quadratic programming (QP) is presented. Firstly, the surrogate problem for QP is developed, and the Karush-Kuhn-Tucker conditions of the surrogate problem hold if the unconstrained minimum of the objective function does not satisfy any constraints. Then, Karmarkar's algorithm for linear programming (LP) is introduced to solve the surrogate dual problem. In addition, the case of general constraints is also discussed, and some examples of optimum truss sizing problems show that the proposed algorithm is robust and efficient.  相似文献   

4.
A new gradient-based neural network is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory, and LaSalle invariance principle to solve linear and quadratic programming problems. In particular, a new function F(x, y) is introduced into the energy function E(x, y) such that the function E(x, y) is convex and differentiable, and the resulting network is more efficient. This network involves all the relevant necessary and sufficient optimality conditions for convex quadratic programming problems. For linear programming and quadratic programming (QP) problems with unique and infinite number of solutions, we have proven strictly that for any initial point, every trajectory of the neural network converges to an optimal solution of the QP and its dual problem. The proposed network is different from the existing networks which use the penalty method or Lagrange method, and the inequality constraints are properly handled. The simulation results show that the proposed neural network is feasible and efficient.  相似文献   

5.
Quadratic programming (QP) has previously been applied to the computation of optimal controls for linear systems with quadratic cost criteria. This paper extends the application of QP to non-linear problems through quasi-linearization and the solution of a sequence of linear-quadratic sub-problems whose solutions converge to the solution of the original non-linear problem. The method is called quasi-linearization-quadratic programming or Q-QP.

The principal advantage of the Q-QP method lies in the ease with which optimal controls can be computed when saturation constraints are imposed on the control signals and terminal constraints are imposed on the state vector. Use of a bounded-variable QP algorithm permits solution of constrained problems with a negligible increase in computing time over the corresponding unconstrained problems. Numerical examples show how the method can be applied to certain problems with non-analytic objective functions and illustrate the facility of the method on problems with constraints. The Q-QP method is shown to be competitive with other methods in computation time for unconstrained problems and to be essentially unaffected in speed for problems having saturation and terminal constraints  相似文献   

6.
基于QPSO训练支持向量机的网络入侵检测   总被引:1,自引:0,他引:1  
对于大规模入侵检测问题,分解算法是训练支持向量机的主要方法之一.在结构风险最小化的情况下,利用改进后的蚁群算法(QPSO)解决二次规划问题(QP),寻找最优解,并对 ArraySVM 算法进行了改进,同时对KDD入侵检测数据进行了检测.结果表明,算法精确度高于改进前的 ArraySVM 算法,并且减少了支持向量点数量.  相似文献   

7.
提出了一种基于0.618法求解具有线性约束的二次规划问题的神经网络学习新算法。与已有的求解线性约束的二次规划问题的神经网络学习算法相比,该算法的适用范围更广,计算精度更高。其目的是为具有线性约束的二次规划问题的求解提供一种新方法。仿真实验验证了新算法的有效性。  相似文献   

8.
冗余度机械臂的二次规划(QP)问题同时受制于等式约束、不等式约束和双端约束,且面向冗余度机械臂实时控制的该类QP问题的求解对运算实时性有较高要求。考虑同时受制于上述三种约束的二次规划问题的求解,给出并研究两种数值算法(E47和94LVI算法)。这类带约束的二次规划问题被等价转换为分段线性投影方程。应用E47和94LVI算法求解上述分段线性投影方程,从而得到二次规划问题的最优数值解。同时,通过大量的数值实验,研究两种算法面向冗余度机械臂的QP问题求解性能,并给出E47、94LVI算法与经典有效集算法的对比实验结果。最终证实了E47和94LVI两种算法在求解二次规划问题上的高效性和优越性。  相似文献   

9.
非线性约束预测控制关键是求得可行性优化解. 输入输出反馈线性化是非线性控制一种常用的方法, 其系统的初始线性输入约束转化成非线性基于状态的约束, 因而无法采用常规的二次规划(QP)求解优化问题. 针对连续状态空间模型系统, 本文提出迭代二次规划方法来寻求非线性优化解. 为了保证算法的收敛性, 系统加入另外一种迭代算法来保证其在整个预测时域上能得到可行解. 仿真控制结果表明了该方法的有效性.  相似文献   

10.
Despite safe mechanical design is necessary for the collaborative robots, we can not underestimate the importance of active safety due to a multi-objective control design. Active safety not only complements the mechanical compliance but also enables classical industrial robots the ability to fulfill additional task-space objectives. Using the gradient of the collision avoidance task as hard constraints of a quadratic programming (QP) controller, we assign strict priority to avoid collisions and specify other QP controller objectives with soft task priorities. Through experiments performed on a dual-arm robot, we show that the proposed solution is able to generate safe robot motion that fulfills the task specifications while keeping the feasibility of the underlying quadratic optimization problem.  相似文献   

11.
林常青  宗群  田栢苓 《控制工程》2012,19(2):297-300,306
针对飞行器上升段轨迹优化求解困难的问题,提出一种基于正交配点的优化求解方法。该方法以第二类切比雪夫正交多项式的零点作为系统控制变量和状态变量的离散点,利用拉格朗日插值多项式对状态和控制变量进行拟合。通过对多项式的求导将动力学微分方程约束转化为代数约束,从而把无限维的最优控制问题转化为一个有限维的非线性规划(Nonlinear Programming,NLP)问题。随后,利用序列二次规划(Sequential Quadratic Program-ming,SQP)方法求解转化后的NLP问题,获得最优的飞行轨迹。最后,飞行器上的仿真结果验证了所提方法的有效性。研究成果可为飞行器的制导控制提供可行的飞行轨迹,有一定的工程应用价值。  相似文献   

12.
We propose an algorithm for the effective solution of quadratic programming (QP) problems arising from model predictive control (MPC). MPC is a modern multivariable control method which gives the solution for a QP problem at each sample instant. Our algorithm combines the active-set strategy with the proportioning test to decide when to leave the actual active set. For the minimization in the face, we use a direct solver implemented by the Cholesky factors updates. The performance of the algorithm is illustrated by numerical experiments, and the results are compared with the state-of-the-art solvers on benchmarks from MPC.  相似文献   

13.
To improve the survivability during an emergency situation, an algorithm for aircraft forced landing trajectory planning is proposed. The method integrates damaged aircraft modelling and trajectory planning into an optimal control framework, in order to deal with the complex aircraft flight dynamics, a solving strategy based on Gauss pseudospetral method (GPM) is presented. A 3-DOF nonlinear mass-point model taking into account the wind is developed to approximate the aircraft flight dynamics after loss of thrust. The solution minimizes the forced landing duration, with respect to the constraints that translate the changed dynamics, flight envelope limitation and operational safety requirements. The GPM is used to convert the trajectory planning problem to a nonlinear programming problem (NLP), which is solved by sequential quadratic programming algorithm. Simulation results show that the proposed algorithm can generate the minimum-time forced landing trajectory in event of engine-out with high efficiency and precision.  相似文献   

14.
By introducing a stage-wise prediction formulation that enables the use of highly efficient quadratic programming (QP) solution methods, this paper expands the computational toolbox for solving step response MPC problems. We propose a novel MPC scheme that is able to incorporate step response data in a traditional manner and use the computationally efficient block factorization facilities in QP solution methods. In order to solve the MPC problem efficiently, both tailored Riccati recursion and condensing algorithms are proposed and embedded into an interior-point method. The proposed algorithms were implemented in the HPMPC framework, and the performance is evaluated through simulation studies. The results confirm that a computationally fast controller is achieved, compared to the traditional step response MPC scheme that relies on an explicit prediction formulation. Moreover, the tailored condensing algorithm exhibits superior performance and produces solution times comparable to that achieved when using a condensing scheme for an equivalent (but much smaller) state-space model derived from first-principles. Implementation aspects necessary for high performance on embedded platforms are discussed, and results using a programmable logic controller are presented.  相似文献   

15.
In the application of moving horizon estimation (MHE) algorithm, the window length will affect the estimation accuracy and the computing efficiency. For this kind of problem, a method of parameter optimization is proposed to obtain suitable window length. Firstly, in order to facilitate online solution, the optimization problem involved in the algorithm is transformed into a quadratic programming (QP) problem in matrix form. Secondly, for the time index and the estimated residual index that measure different properties, the normalization idea is adopted to incorporate them into the same dimension to design the fitness function, and a genetic optimization algorithm based on simulated annealing mechanism is given to search for the optimal window length. Finally, the proposed parameter optimization method is verified by two cases. The results show that the parameter optimization method has the advantages of excellent local search ability and sufficient convergence, and the window length obtained by this method can better take into account the two performance indexes of the MHE algorithm and improve the estimation performance.  相似文献   

16.
In this paper, a multiobjective quadratic programming problem fuzzy random coefficients matrix in the objectives and constraints and the decision vector are fuzzy variables is considered. First, we show that the efficient solutions fuzzy quadratic multiobjective programming problems series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. An application fuzzy portfolio optimization problem as a convex quadratic programming approach is discussed and an acceptable solution to such problem is given. At the end, numerical examples are illustrated in the support of the obtained results.  相似文献   

17.
This paper presents an approach for the constrained non-linear predictive control problem based on the input-output feedback linearization (IOFL) of a general non-linear system modelled by a discrete-time affine neural network model. Using the resulting linear system in the formulation of the original non-linear predictive control problem enables to restate the optimization problem as the minimization of a quadratic function, which solution can be found using reliable and fast quadratic programming (QP) routines. However, the presence of a non-linear feedback linearizing controller maps the original linear input constraints onto non-linear and state dependent constraints on the controller output, which invalidates a direct application of QP routines. In order to cope with this problem and still be able to use QP routines, an approximate method is proposed which simultaneously guarantees a feasible solution without constraints violation over the complete prediction horizon within a finite number of steps, while allowing only for a small performance degradation.  相似文献   

18.
The paper deals with a nonlinear programming (NLP) problem that depends on a finite number of integers (parameters). This problem has a special form, and arises as an auxiliary problem in study of solutions' properties of parametric semi-infinite programming (SIP) problems with finitely representable compact index sets. Therefore, it is important to provide a deep study of this NLP problem and its properties w.r.t. the values of the parameters. We are especially interested in the case when optimal solutions of the NLP problem satisfy certain properties due to some specific requirements arising in parametric SIP. We establish the values of the parameters for which optimal solutions of the corresponding NLP problem fulfil the needed properties, and suggest an algorithm that determines the right values of the parameters. An example is proposed to illustrate the application of the algorithm.  相似文献   

19.
A two/infinity norm criteria (termed bi‐criteria) weighting scheme is proposed in this paper for resolving manipulator redundancy at the joint‐acceleration level. This bi‐criteria scheme is aimed at remedying discontinuity‐points and torque‐instability problems which arise in pure infinity‐norm acceleration‐minimization schemes. By incorporating joint physical limits, the proposed bi‐criteria redundancy‐resolution scheme can finally be formulated as a quadratic program (QP) subject to equality constraint, inequality constraint and bound constraint simultaneously. As a real‐time QP solver with simple piecewise‐linear dynamics and higher computational efficiency, the primal‐dual neural network based on linear variational inequalities (LVI) is presented in this paper to solve online such a bi‐criteria weighting scheme. Computer‐simulation results based on a PMUA560 robot arm illustrate the advantages and efficacy of such a neural weighting scheme.  相似文献   

20.
In this paper, for joint torque optimization of redundant manipulators subject to physical constraints, we show that velocity-level and acceleration-level redundancy-resolution schemes both can be formulated as a quadratic programming (QP) problem subject to equality and inequality/bound constraints. To solve this QP problem online, a primal-dual dynamical system solver is further presented based on linear variational inequalities. Compared to previous researches, the presented QP-solver has simple piecewise-linear dynamics, does not entail real-time matrix inversion, and could also provide joint-acceleration information for manipulator torque control in the velocity-level redundancy-resolution schemes. The proposed QP-based dynamical system approach is simulated based on the PUMA560 robot arm with efficiency and effectiveness demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号