首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
高分六号中分辨率宽幅相机(GF6-WFV)设计了两个红边波段,具有水体叶绿素a浓度监测的潜力。实验选取官厅水库、陆浑水库和白洋淀等6个中国东部典型湖库为研究区,获取141个采样点实测光谱和叶绿素a浓度数据。基于实测数据对4种常用的叶绿素a浓度反演半经验模型进行参数优化和模型精度验证,选取最优反演模型。结果表明,GF6-WFV数据新增红边Ⅰ波段(B5:710 nm)和红波段(B3:660 nm)构建的两波段比值模型反演精度较高,相关系数平方(R2)为0.89,平均相对误差(MRE)为34.71%,均方根误差(RMSE)为13.29 mg/m3。研究表明:利用GF6-WFV影像数据能有效反演水体叶绿素a浓度,研究基于多湖库、多时相数据建立的GF6-WFV影像水体叶绿素a浓度反演模型,在中国东部典型湖库具有较好的适用性。  相似文献   

2.
内陆水体中浮游植物的存在对悬浮物(TSM)遥感反演模型精度具有一定的影响,藻类丰度会导致水体遥感反射率降低。实验基于中国、澳大利亚和美国内陆水体的372个采样点(4个数据集)水质分析和光谱实测数据,构建内陆水体遥感反射率与TSM的相关关系,建立最优波段比模型(OBR),并分析了藻类颗粒物存在对该模型精度的影响。由于水质的不均一性,不同区域的水质参数敏感波段存在差异,因此各数据集用于建模的最优波段比值不同。结果表明,OBR模型精度较高,误差较小,中国水体模型验证均具有较好效果(石头口门水库:R2=0.87,RMSE=14.1 mg/L;查干湖:R2=0.82,RMSE=23.6 mg/L),澳大利亚水体模型验证效果最佳,R2值高达0.95(RMSE=4.2 mg/L),美国水体模型精度较低(R2=0.78,RMSE=3.7 mg/L)。研究发现,模型精度受水体叶绿素(Chla)浓度和Chla/TSM比率影响,当水体以TSM浓度较高的非藻类颗粒物为主时(如中国石头口门水库和南澳洲地区水体数据集),最优波段比值模型表现更好;而当水体以浮游植物为主时,水体中的浮游植物的丰度会使光谱信号复杂化,从而限制或降低TSM浓度遥感算法的精度(如美国印第安纳州中部水库数据集)。  相似文献   

3.
2011年3月27日于太湖梅梁湾和湖心区域进行光谱数据采集,同步水质理化分析数据得到叶绿素a浓度区间为4.99μg/L~31.06μg/L。基于较低叶绿素a浓度水平的实测光谱数据及同步的理化分析数据分别采用二波段模型、光谱反射率一阶微分模型、反射峰位置模型、三波段模型和四波段模型对梅梁湾和湖心区域的叶绿素a浓度进行建模遥感估算。5个模型的回归分析结果对应R2分别为0.775,0.811,0.786,0.826和0.846,RMSE分别为4.02μg/L,3.52μg/L,3.82μg/L,3.44μg/L和3.24μg/L。并针对春季较低叶绿素a浓度水平下的光谱估算模型在应用价值和精度方面做了比较评价。  相似文献   

4.
以北部湾为研究对象,基于Sentinel-3A卫星搭载的OCLI水色传感器,探索了叶绿素浓度的遥感反演方法。通过利用实测光谱数据对北部湾海域进行了分区,结合实测的叶绿素a浓度和Sentinel-3A遥感数据尝试不同的反演因子,包括波段比值、波段差值和波段差比,构建了叶绿素a浓度的遥感反演模型。研究结果表明:(1)北部湾海域的遥感反射率曲线呈现明显的分区的特征,结合光谱特征将北部湾海域分为近岸水体、过渡水体和离岸水体;(2)不同水体类型适用不同的反演因子构建模型,其中Rrs(764.375)/Rrs(681.25)用于近岸水体,[1/Rrs(620)-1/Rrs(708.75)]/Rrs(753.75)用于过渡水体,Rrs(708.75)-Rrs(764.375)用于离岸水体,均取得了较好的拟合效果,相应的R2值分别为0.67、0.80和0.8;(3)分区的方法有效的提高了遥感反演北部湾叶绿素浓度模型的适用性和精度。研究基于Sentin...  相似文献   

5.
针对HJ-1A/B卫星CCD数据,建立适合于厦门海域的叶绿素a浓度反演模型,将为持续监测该海域的赤潮提供时间序列的叶绿素a浓度数据。基于2013年7月31日厦门海域水体实测光谱与叶绿素a浓度同步测量数据,及HJ\|1B卫星CCD2光谱响应函数,对各波段遥感反射率与叶绿素a浓度的相关性进行比较,证实蓝、绿波段比值与叶绿素a浓度相关性最高。对OC3模型在内的5种模型的反演结果和实测叶绿素a浓度做相关性分析,发现各模型相关系数均达到0.7以上。利用2013年7月30日实测数据对同期厦门海域HJ-1B卫星CCD2数据叶绿素a浓度反演结果进行精度验证,结果表明本地化的10指数模型在反演叶绿素a浓度动态范围较大的区域具有更高的精度。  相似文献   

6.
城乡化发展与基础设施建设滞后之间矛盾的深入导致面源污染和工业废水排放对于闽江水质造成了一定影响,因而对闽江叶绿素a进行实时监测及污染物迁移动态监测,是闽江水质治理的关键步骤。文章基于四年实测光谱及水质数据,通过闽江干流实测水体光谱特征分析以及遥感影像敏感波段分析,确定了闽江干流丰、枯水期叶绿素a光谱特征存在差异,并利用多元回归及机器学习分别构建了丰、枯水期闽江干流叶绿素a浓度反演模型,通过精度验证确定了丰、枯水期叶绿素a的最佳遥感反演模型。  相似文献   

7.
针对高光谱数据大气校正耗时长和查找表构建不准确等问题,提出基于MODTRAN辐射传输模型实时创建大气校正参数查找表的方法,并应用于水体叶绿素浓度反演。首先,基于高光谱数据实时构建大气校正参数查找表;其次,根据循环迭代反演得到水汽含量和气溶胶光学厚度对查找表插值得到各个波段的大气校正参数,从而完成所有波段数据的大气校正;最后,选择植被、土壤和水体3类典型地物精度分析,并基于反演水体的叶绿素a浓度验证大气校正精度的可靠性。实验结果表明:该方法明显优于6S、FLAASH等大气校正方法;在运行效率上,在多线程并行加速后,运行效率提升了2~4倍;基于水体反射率数据反演水体叶绿素a浓度,反演模型预测集验证中ρ为0.804 7,RMSE为1.8。  相似文献   

8.
地形效应会使遥感影像中的地表反射率发生畸变,进而影响基于反射率估算的叶面积指数(Leaf Area Index,LAI)精度。为了减弱或消除地形对LAI反演的影响,基于三维辐射传输模型DART(Discrete Anisotropic Radiative Transfer)构建坡地反射率与LAI数据集作为训练数据。以反射率为输入,LAI为输出,利用随机森林算法进行训练,构建山地LAI反演模型。结合实际遥感影像数据实现山地LAI的估算,并利用实测数据对反演结果开展精度评价。同时,基于DART模型和随机森林构建了平地LAI反演模型作为参照以评价本文发展方法的有效性。结果表明:考虑了地形影响的山地LAI反演模型具有较强的估算能力,验证结果的精度(决定系数(R2)=0.57,均方根误差(RMSE)=0.77 m2/m2)优于平地反演模型(R2=0.46,RMSE=0.86 m2/m2);基于DART模型构建的山地反演模型能够捕捉到坡度和坡向对地表反射率的影响,其反演结果较好地还原了研究区LAI的空间分布,与地面真实情况接近。研究...  相似文献   

9.
新庙泡叶绿素a浓度高光谱定量模型研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用吉林省新庙泡的高光谱实测数据和水质采样分析数据,尝试通过单波段、波段比值、一阶微分和峰谷间距法建立叶绿素a反演模型。结果表明:单波段光谱反射率与叶绿素a浓度的相关性较差,不宜用于该区域的叶绿素a浓度估算;680 nm和700 nm波段反射率之比、700 nm处光谱一阶微分值和两波段峰谷间距反演模型都具有较高的决定系数,分别为0.783 4、0.792 7、0.796 9,验证模型的决定系数为0.651 3、0.431 7、0.756 4,均方根误差分别为8.69μg·L-1、14.50μg·L-1、10.04μg·L-1,显著水平P<0.01。这3种方法皆可以用于新庙泡叶绿素a浓度的定量遥感,其中又以峰谷间距法为最优。  相似文献   

10.
应用MODIS监测太湖水体叶绿素a浓度季节变化研究   总被引:1,自引:0,他引:1  
以太湖作为实验区,利用波段比值、差值和组合算法讨论了非成像及成像高光谱数据和叶绿素浓度相关性差异和敏感波段分布,在此基础上将不同时段的MODIS影像,不同空间分辨率的波段反射率与叶绿素a浓度实测值进行相关分析,通过回归拟合建立并验证了不同季节的叶绿素a浓度遥感监测模型,并应用模型计算出太湖水体叶绿素a浓度的分布情况,对太湖水质变化进行了评价.研究结果表明,MODIS影像在太湖的水质动态变化监测中是可用的.  相似文献   

11.
背包式激光雷达(Backpack Laser Scanning, BLS)在森林资源调查中具有很大的应用潜力,但在复杂地表情景下,单木材积和林分蓄积量提取精度存在较大不确定性。以广西高峰林场为研究区,利用随机森林方法,基于BLS点云数据对单木材积和样地蓄积量进行估测。首先,对BLS点云进行单木分割,提取单木胸径(DBH)、树高(Htree)、冠幅直径(CD)、冠幅面积(CA)、冠幅体积(CV)、郁闭度(CC)、间隙率(GF)和叶面积指数(LAI)共8个特征参数,并计算56个分层高度指标(高度百分比、累积高度百分比、变异系数、冠层起伏率等)。然后,通过随机森林算法构建单木材积估测模型,并对比各种参数组合的预测精度。得到结果: ①仅用8个单木结构特征参数进行建模,估测精度为: R2=0.83、RMSE=0.097 m3; ②加入分层高度指标的模型估测精度有所提升: R2=0.87、RMSE=0.087 m3;③通过Boruta算法进行变量筛选,输入参数从64个减少至52个,估测精度差异不大: R2= 0.87、RMSE=0.087 m3;④样方蓄积量估测精度为: R2=0.97,RMSE=0.703 m3·ha-1。结果表明,基于BLS点云建立随机森林单木材积估测模型可以较好地估测单木材积,样方蓄积量估测精度高。  相似文献   

12.
叶面积指数(Leaf Area Index, LAI)是作物长势监测及产量估算的重要指标,准确高效的LAI反演对农田经济的宏观管理具有重要作用。研究探索了联合无人机激光雷达(Light Detec-tion and Ranging, LiDAR) 和高光谱数据反演玉米叶面积指数的潜力,并分析了LiDAR数据不同采样尺寸、高度阈值、点密度对LAI反演精度的影响同时确定三者的最优值。该研究分别从重采样的LiDAR数据和高光谱影像中提取了LiDAR变量和植被指数,然后基于偏最小二乘回归(Partial Least Square Regression,PLSR)和随机森林(Random Forest, RF) 回归两种算法分别利用LiDAR变量、植被指数、联合LiDAR变量和植被指数构建预测模型,并确定反演玉米LAI的最优预测模型。结果表明:反演玉米LAI的最优采样尺寸、高度阈值、点密度分别为5.5 m、0.55 m、18 points/m2,研究发现最高的点密度(420 points/m2)并没有产生最优的玉米LAI反演精度,因此单独依靠增加点密度的方法提高LAI的反演精度并不可靠。基于LiDAR变量获得的LAI反演精度(PLSR:R2=0.874,RMSE=0.317;RF:R2=0.942,RMSE=0.222)高于基于植被指数获得的LAI反演精度(PLSR: R2=0.741,RMSE=0.454;RF:R2=0.861,RMSE=0.338),而使用组合变量构建预测模型的反演精度(PLSR:R2=0.885, RMSE=0.304;RF:R2=0.950,RMSE=0.203)优于使用单一变量建立的LAI预测模型,其中利用联合LiDAR变量和植被指数建立的随机森林回归模型为最优预测模型。因此,将两种数据源融合在提高植被LAI反演精度方面具有一定的潜力。  相似文献   

13.
In this study, a change detection model, constructed using the Sentinel-1 Synthetic Aperture Radar (SAR) data and the simultaneous Normalized Difference Vegetation Index (NDVI) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 sensors, is applied to estimate soil moisture in middle reaches of the Heihe River Basin, and the effects of two key parameters on retrieval accuracy are comprehensively investigated. The results show that: (1) when constructing the empirical relationship between backscattering coefficient difference ( Δ σ ) and Vegetation Index (VI) required by change detection model, the optimal sampling ratios in the ( Δ σ - V I ) space are approximately 2% and 4% for MODIS NDVI and Landsat 8 NDVI, respectively; (2) the Landsat 8 NDVI-based change detection model slightly outperforms the MODIS NDVI-based model in soil moisture retrieval accuracy, with Root Mean Square Error(RMSE) of 0.040 m3/m3 and 0.044 m3/m3respectively; (3) for the key parameters of the change detection method, replacing the ground-based initial soil moisture and scaling factor (maximum soil moisture difference between two adjacent dates Δ M s m a x ) by the low-resolution SMAP/Sentinel-1 L2_SM_SP data will increase the RMSE by 0.01 m3/m3 and 0.04 m3/m3 respectively. Comparing to the parameter of initial soil moisture, the error in soil moisture scaling factor will lead to more significant degradation in the performance of the change detection method, thus it is recommended to use the high precision scaling factor for soil moisture estimation. This study confirms the promising potential of Sentinel-1 data for retrieving high-resolution soil moisture via change detection method and provides practical insight into its application.  相似文献   

14.
叶面积指数(LAI)遥感估算是植被定量遥感研究的热点之一,监测植被LAI时空变化对于研究陆地生态系统碳循环及全球变化等具有非常重要的意义。在我国西南山区设置10个50km×50km的观测样区作为研究区,其中包括5个森林生态系统样区、3个农田生态系统样区和2个草地生态系统样区。分别获取不同优势植被类型LAI地面实测数据,结合同期获取的遥感数据,考虑地形因素影响,基于偏最小二乘原理分别构建各样区LAI遥感估算模型,并采用交叉验证的方式对模型精度进行评价。结果表明:考虑了海拔、坡度和坡向等地形因子的森林LAI遥感反演模型与未考虑地形变量的模型相比,其验证精度有所提高,R2由0.30~0.75提高至0.50~0.80,RMSE由0.52~0.93m2/m2降低至0.48~0.89m2/m2;所有样区优势植被类型LAI反演模型验证R2在0.40~0.80之间,RMSE在0.22~0.89m2/m2之间。发展的LAI遥感估算方法有助于认知山地植被LAI反演的地形效应问题,可为进一步的山地植被长势监测提供科学依据。  相似文献   

15.
卫星遥感反演的气溶胶光学深度(AOD)产品已被广泛应用于近地面PM2.5浓度的估算。已有研究表明通过构建AOD和PM2.5之间的高级统计模型—线性混合效应模型(LME)可以有效获取近地面PM2.5浓度的空间分布,但由于引入了大量的气象和土地利用等因子,使得模型对变量的解译能力有所降低。为此,基于MODIS AOD(空间分辨率:3 km),以我国东部长江三角洲—福建—广东(YRD-FJ-GD)为研究区,构建了两种非参数机器学习模型,即支持向量机(SVM)和随机森林(RF)模型,来估算2018年YRD-FJ-GD地区的近地面PM2.5浓度,并将其与线性混合效应模型(LME)的估算结果进行对比。研究发现,3种模型估算的PM2.5浓度与地面实测值之间的R2均高于0.6,其中,RF模型的估算精度最优,模型拟合的R2高达0.91,比SVM模型(R2=0.79)和LME模型(R2=0.64)的估算结果分别提高了13%和30%;且RMSE(~9.07 μg/m3)也远低于LME(~19.09 μg/m3)和SVM模型(~17.29 μg/m3)。此外,由随机森林(RF)模型估算的2018年YRD-FJ-GD地区的PM2.5空间分布显示,长江三角洲(YRD)地区的年均PM2.5浓度最高(>46 μg/m3),其次为广东省(GD),福建地区(FJ)的年均PM2.5浓度最低(<37 μg/m3);4个季节的平均PM2.5浓度则呈现冬季(46.32 μg/m3)>春季(38.80 μg/m3)>秋季(36.15 μg/m3)>夏季(30.16 μg/m3)的分布格局。研究结果表明:与高级统计模型(LME)和机器学习(SVM)相比,随机森林(RF)模型能更好地应用于YRD-FJ-GD地区的PM2.5浓度估算。  相似文献   

16.
基于Sentinel-1合成孔径雷达 (SAR) 数据及相同时段的中分辨率成像光谱仪(MODIS)和Landsat 8两种归一化植被指数(NDVI),构建变化检测模型以估算黑河中游的高分辨率土壤水分,并探讨模型中具体参数设置对估算精度的影响。结果表明:①在对后向散射系数时间序列的差值 ( Δ σ ) 和植被指数 ( V I ) 进行线性建模过程中,MODIS NDVI和Landsat 8 NDVI这两种植被产品所构建的模型在 Δ σ - V I 空间中所选取的采样点比例分别为2%和4%时,各自取得最优精度; ②以土壤水分反演为目标,使用Landsat 8 NDVI构建的变化检测模型略优于使用MODIS NDVI构建的变化检测模型,两种模型的均方根误差RMSE分别为0.040 m3/m3和0.044 m3/m3,相关系数R分别为0.86和0.83; ③对于变化检测方法的关键参数,若使用低分辨率的SMAP/Sentinel-1 L2_SM_SP土壤水分数据分别代替站点观测的土壤水分初始值和缩放因子 (即两个连续时相土壤水分变化的最大值 Δ M s m a x ) 这两个参数,则土壤水分RMSE将分别增加0.01 m3/m3和0.04 m3/m3。即土壤水分缩放因子这一参数的误差对反演结果的影响大于土壤水分初始值误差对反演结果的影响,故采用高精度的缩放因子进行变化检测估算。研究结论对于利用新兴的Sentinel-1 SAR数据,通过变化检测算法准确获取高分辨率土壤水分信息具有实际参考价值。  相似文献   

17.
基于Sentinel-1及 Landsat 8数据的黑河中游农田土壤水分估算   总被引:1,自引:0,他引:1  
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对模型中的植被透过率因子(与植被含水量密切相关)采用3种不同的光学遥感指数——修正的土壤调节植被指数(Modified Soil Adjusted Vegetation Index,MSAVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和归一化水体指数(Normalized Difference Water Index,NDWI)进行参数化估计,用于校正植被层的散射贡献。在此基础上,构造基于SAR观测和Oh模型的代价函数,利用复型洗牌全局优化算法进行土壤水分和地表粗糙度的联合反演。采用Sentinel-1 SAR和Landsat 8多光谱数据在黑河中游开展了反演试验,并利用相应的地面观测数据对结果进行了验证。结果表明反演结果与地面观测具有良好的一致性,其中基于NDWI的植被含水量反演效果最佳,与地面观测比较,土壤水分决定系数(R 2)在0.7以上,均方根误差(RMSE)为0.073 m^ 3/m^ 3;植被含水量R 2大于0.9,RMSE为0.885 kg/m 2,表明该方法能够较准确地估计土壤水分。同时发现植被含水量的估计结果,以及植被透过率的参数化方案对土壤水分的反演精度有一定的影响,在未来的研究中需要进一步探索。  相似文献   

18.
从第三十五届国际宇航联合会的空同遥感专业小组会议上可以看出,目前空间遥感的现状及未来发展前景。今后空间遥感将从具有单一遥感能力向具有综合遥感能力方面发展,不仅能对陆地,而且对海  相似文献   

19.
为了厘清中国近30 a来植被生长趋势及其对不同环境变化的响应,使用了3套长时间序列遥感叶面积指数(Leaf area index, LAI)数据集以及8套生态系统模型,对LAI变化趋势从总量、空间分布以及不同植被类型进行了分析与归因。总量上,1982~2015年遥感观测的LAI趋势(9.8×10-3m2/m2·a)高于生态系统模型模拟的趋势(4.2×10-3m2/m2·a),大气二氧化碳浓度上升是主要驱动因素((3.5×10-3m2/m2·a);遥感观测到全国79.5%的区域LAI都呈现显著增长的趋势,而生态系统模型模拟LAI的增长面积占比为33.1%;除草地外,生态系统模型低估了其他植被类型的LAI变化趋势。模型对降雨变化的响应过于敏感以及对人为活动模拟能力不足是模型模拟中国LAI变化趋势不确定性的重要来源。本研究定量分析了近30 a中国各种植被变化情况及其驱动因子,并对模型低估中国植被生长进行了解释,为后续中国地区植被相关研究提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号