首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
针对实际工程中墙后作用有不同分布模式的条形荷载、填土为黏性土,墙背与填土间存在黏着力,采用库仑土压力理论假设,从滑动楔体处于极限平衡状态时力的静力平衡条件出发,推导了适用多种复杂条件下的主动土压力计算式,并给出临界破裂角的显式解答以及各理论计算式适用范围的边界条件。该公式在多段条形荷载作用下可扩展应用,对于不分段条形荷载,只需作相应的简化后便可按相同的方法求解。受边界条件的限制,该公式存在一定的无解区。算例分析结果表明:条形荷载不同分布模式下,相关文献方法提出的主动土压力计算式与该公式的计算结果完全一致;由于未考虑条形荷载对滑动楔体临界破裂解的影响,规范方法得到的主动土压力偏小。  相似文献   

2.
本文通过对砂土室内模型试验中土压力、挡板水平位移等实测资料的研究 ,重点分析了填土后挡板上土压力的分布形态及土压力大小 ,探讨了挡板工作机理 ,并与平行墙土压力计算式的计算结果进行了拟合 ,提出由于土拱的存在 ,挡板后土压力要小于库仑或朗金理论的计算值 ,挡板后土压力可用平行墙土压力计算式进行计算的观点。  相似文献   

3.
天然黄土一般具有结构性,结构性的存在使得土体在力学和变形特性等方面呈现出不同的变化规律。基于对黄土结构性的研究和真三轴试验,利用改制的平面应变仪,对黄土在平面应变条件下的应力应变规律及其结构性的影响进行了研究分析。提出了平面应变条件下结构性对黄土力学和变形特性影响的适用表达式。土压力计算是挡土墙设计中重要考虑的问题,将结构性引入其计算中,更加真实合理地反映墙体的受力状态。研究结果表明:在考虑土体的结构性影响时,墙后的主动土压力和墙底的被动土压力相比于不考虑时都有明显不同的变化。表现为总主动土压力变大,作用点下移;总被动土压力变小,作用点上移。  相似文献   

4.
桩锚挡墙支护体系挡板土压力的试验研究   总被引:3,自引:0,他引:3  
本文通过对砂土室内模型试验中土压力,挡板水平位移等实测资料的研究,重点分析了填土后挡板上土压力的分布形态及土压力大小,探讨了挡板工作机理,并与平行墙土压力计算式的计算结果进行了拟合,提出由于土拱的存在,挡板后土压力要小于库仑或朗金理论的计算值,挡板后土压力可用平行墙土压力计算式进行计算的观点。  相似文献   

5.
库仑理论假定挡土墙后填土破裂面为一直线,然而众多试验和理论表明墙后填土破裂面为一曲线。考虑土拱效应,并假设土体破裂面为旋轮线,土拱形状为圆弧形,根据应力分析得到了侧土压力系数的表达式,利用水平层分析法,推导出挡土墙在平动模式下主动土压力的分布、总土压力和总土压力作用点高度的计算式,并用模型试验与现有理论进行对比。结果表明:挡土墙主动土压力计算结果与模型试验结果吻合,侧土压力系数与直线破裂面结果有明显差异,当墙土间摩擦角与土体内摩擦角比值较大时,总土压力比库仑理论计算结果大。  相似文献   

6.
经典土压力理论都是通过研究弹性半空间体内的应力状态,根据土的极限平衡条件和楔体的静力平衡条件而得出的。因土具有蠕变及固结特性,所以产生主动土压力和被动土压力的时机都是暂时的,从长久角度来看,因蠕变及固结现象作用在挡土墙上的土压力也都是非极限平衡条件(有限位移)下的土压力。为计算有限位移条件下作用在挡土墙上的土压力,依据线弹性本构理论建立了有限位移条件下挡土墙上的土压力计算式,引入Duncan-Chang非线性弹性模型中的切线模量来反映土体模量随围压的变化,并推导出发生朗肯主动土压力、静止土压力、主应力方向偏转、朗肯被动土压力的界限应变,依据这4个界限应变将作用在挡土墙上的土压力分为5个状态分区,即主动破坏状态区、有限位移主动土压力状态区、主应力反转前有限位移被动土压力状态区、主应力反转后有限位移被动土压力状态区和被动破坏状态区。通过将所提公式的计算结果与模型试验结果对比分析,得出如下结论:当挡土墙产生水平平动位移、绕墙脚的转动位移和水平平动+绕墙脚转动组合位移时,土压力分布均呈非线性分布,且不同位移下土压力随墙深度的计算值与实测值基本一致,说明提出的有限位移条件下土压力的计算式能够很好地应用在实际工程的挡土墙设计中。  相似文献   

7.
以某山区公路旧路拓宽改造工程中新建的衡重式加筋土路肩挡土墙为原型,设计了4组模拟墙体实际位移形态的土工离心模型试验,讨论了墙后土体压实度和土中加筋对墙背土压力和路基填土变形的影响规律。试验表明:①墙后土体加筋对减小墙背承受的土压力作用随填土压实度的提高而趋于明显,主要影响区域位于上墙背的下半部分,压实度由88%增至95%会引起上墙背土压力分布由近似线性增大演化为折线型变化;②衡重台对其上覆填土存在托举效应,致使下墙背的土压力大幅减小,其影响范围约为衡重台以下约1/3下墙高度;③墙后土体加筋能提高路基填土的抗变形能力,减小因墙体侧向位移引起的填土表面下沉,对降低新旧路基间的不均匀变形效果显著。  相似文献   

8.
根据平移模式下的微元滑裂体水平面上的剪力为零的条件和土拱效应,获得受填土内摩擦角和墙土摩擦角影响的非极限滑裂面倾角和非极限主动土压力系数,其中,非极限填土内摩擦角和墙土摩擦角是墙体位移的函数。根据非极限水平微元滑裂体的静力平衡,得到平移模式下考虑土拱效应和位移影响的非极限主动土压力计算式。参数影响分析表明:非极限滑裂面倾角和非极限主动土压力系数均随非极限墙土摩擦角的增大而增大;非极限主动土压力系数和非极限主动土压力均随侧向位移比的增大而减小;非极限主动土压力分别随着非极限填土内摩擦角、非极限墙土摩擦角的增大而减小。理论值及试验值的对比结果显示:相较于其他方法,本文方法的非极限主动土压力理论值与试验值吻合更好。  相似文献   

9.
狭窄黏性填土刚性挡墙主动土压力研究   总被引:2,自引:0,他引:2  
对于临近既有地下室或竖直基岩面的挡土墙,由于墙后填土宽度有限,采用经典的库伦、朗肯土压力理论计算挡土墙主动土压力是不合适的。采用有限元分析软件ABAQUS,对狭窄黏性填土刚性挡土墙的主动土压力问题进行研究,探讨了墙后土体的临界裂缝深度和滑裂面的发展规律。考虑墙土之间的黏着力和填土竖向裂缝,建立新的理论分析模型,得到了挡土墙水平主动土压力合力的求解方法和主动土压力分布的解析公式。土压力合力系数与土压力强度的理论解和数值解吻合较好,验证了本文理论解的合理性。研究表明,主动极限状态下,填土表面两侧均将产生竖向裂缝,且临界裂缝深度不随填土宽度变化,其值与朗肯裂缝深度接近;随着填土宽度的减小,填土内将产生一道甚至多道滑裂面,挡土墙主动土压力也从基于半无限土体假定的广义库伦土压力值逐渐减小。  相似文献   

10.
很多支挡工程中常出现墙后土体宽度是有限的情况,以往研究该情况下的有限土体形状是规则的,而现在建的较多实际工程中,由于地形复杂化、挡土墙后填土多样化,导致墙后土体形状非四边形状。挡土墙后填土在不满足半无限土体及规则形状土体的条件下,本文基于极限平衡法研究了一种新的土压力计算方法,推导了放坡条件下有限土体主动土压力计算公式。  相似文献   

11.
 研究表明土拱效应是影响挡土墙土压力分布的一个重要因素,但目前关于空间条件下考虑土拱效应的挡土墙土压力研究还很少。通过将土拱效应原理引入顾慰慈等建立的空间土压力计算模型建立了考虑土拱效应的空间土压力计算模型,并将该模型划分为I、II、III、IV四个区域,通过在各个区域内取水平微分单元体,建立各微分单元体的水平和竖向静力平衡方程,推导出了各区相应的挡土墙空间主动土压力计算公式,该公式可以计算出墙背任意位置的主动土压力;并提出了空间土压力合力及其合力作用点的计算方法。通过算例计算可以直观的看出挡土墙后主动土压力的空间分布,由此可以看出,当空间效应存在时考虑土拱效应的挡土墙主动土压力沿墙长的分布与平面应变条件时有很大的不同,此时挡土墙两端附近区域的主动土压力远小于平面应变条件下计算出的主动土压力,同时可以看出考虑空间效应的挡土墙主动土压力合力作用点要比平面应变条件下的位置要高,挡土墙长高比B/H越小空间效应对主动土压力沿墙长的分布和主动土压力合力作用点位置的影响越大。  相似文献   

12.
墙体位移是影响土压力的核心要素。根据Rankine土压力模型,以试样在单剪试验中的剪切过程近似模拟墙后土体由静止进入极限状态的历程,构建土体剪应变与墙体位移在等极限应变条件下的几何方程和基于点应力状态的剪应力与土压力平衡方程,结合以双曲线表达且与几何方程相匹配的剪应变–剪应力理想非线弹塑性物理模型,建立综合反映土体变形与强度特性及初始应力状态影响的墙体位移–土压力函数关系,讨论极限状态下墙体位移的主要影响因素。分析表明:静止与被动(或主动)状态之间的墙体位移–土压力曲线是土体应力–应变特性的宏观体现,两者随变形的增加呈现出相似的变化规律;主动(或被动)状态下的墙体位移随土体极限剪应变、滑移区范围的增加而增大,随静止土压力系数的降低而减小(或增大);工程设计常用力学指标下的粗细粒土进入主动状态时,墙体位移与墙高之比为0.6‰~15.0‰,被动时为-0.5%~-5.9%,理论分析与相关文献模型试验结果吻合。  相似文献   

13.
土压力问题一直是支挡结构设计的重要依据之一,经典土压力理论的假设条件会对实际工程的设计造成误差。在经典理论的基础上,分析了墙后土体的应力状态,推导了考虑墙背摩擦情况的侧土压力系数和土压力应力分布计算表达式,通过与Tsagareli砂性土模型试验实测土压力分布对比,说明了本文方法的合理性,并结合算例分别计算了平面破裂面假定和圆弧破裂面假定情况下土压力及其分布。计算结果表明,取库伦搜索真实破裂面的平面假定时,侧土压力系数为常数,土压力与库伦理论结果一致,为线性分布。取最危险圆弧滑动面的曲面假定时,侧土压力系数呈先增大后减小的变化特点,土压力为非线性分布。  相似文献   

14.
Monitoring was carried out during construction of a cast-in-situ concrete-rigid facing geogrid reinforced soil retaining wall in the Gan (Zhou)-Long (Yan) railway main line of China. The monitoring included the vertical foundation pressure and lateral earth pressure of the reinforced soil wall facing, the tensile strain in the reinforcement and the horizontal deformation of the facing. The vertical foundation pressure of reinforced soil retaining wall is non-linear along the reinforcement length, and the maximum value is at the middle of the reinforcement length, moreover the value reduces gradually at top and bottom. The measured lateral earth pressure within the reinforced soil wall is non-linear along the height and the value is less than the active lateral earth pressure. The distribution of tensile strain in the geogrid reinforcements within the upper portion of the wall is single-peak value, but the distribution of tensile strain in the reinforcements within the lower portion of the wall has double-peak values. The potential failure plane within the upper portion of the wall is similar to “0.3H method”, whereas the potential failure plane within portion of the lower wall is closer to the active Rankine earth pressure theory. The position of the maximum lateral displacement of the wall face during construction is within portion of the lower wall, moreover the position of the maximum lateral displacement of the wall face post-construction is within the portion of the top wall. These monitoring results of the behaviour of the wall can be used as a reference for future study and design of geogrid reinforced soil retaining wall systems.  相似文献   

15.
以河北省保(定)沧(州)高速公路模块式土工格栅加筋石灰土挡墙为工程依托,以现场原型试验为手段,系统研究了该结构工作状态下的基底竖向土压力、墙面板背部侧向土压力和土工格栅拉筋应变分布规律。试验结果表明:基底竖向土压力沿筋长近似呈梯形分布,其大小一般小于理论值,最大值发生在墙背附近,且随竣工后时间的延续有下降的趋势;实测墙背侧向土压力沿墙高呈非线性增长分布,数值小于主动土压力;实测拉筋应变沿筋长呈单峰值分布,且数值均小于0.6%。试验结果可以为类似工程的设计、研究提供参考。  相似文献   

16.
地震动土压力水平层分析法   总被引:5,自引:1,他引:4  
Mononobe-Okabe公式是挡土结构设计中关于侧向动土压力计算的常用方法。但Mononobe-Okabe公式的诸多假设使得其公式适用范围受限,而且无法给出地震动土压力合力作用点位置及地震动土压力强度沿墙背分布情况。为弥补以上不足,基于Mononobe-Okabe平面破裂面假设,采用水平层分析法推导地震条件下主动和被动土压力合力及其作用点位置、土压力强度分布公式,并采用图解法得到临界破裂角的显式解答。公式考虑水平和垂直地震加速度、墙背倾角、挡墙墙背与填料黏结力和外摩擦角、均布超载等诸多因素,可以适用于黏性土和无黏性土的主动和被动土压力计算。分析结果表明,地震条件下土压力强度沿墙高为非线性分布,在相应简化假设条件下公式与Mononobe-Okabe公式完全一致。  相似文献   

17.
采用无黏性砂开展平动模式(T模式)、绕墙底转动模式(RB模式)、绕墙顶转动模式(RT模式)下有限宽度土体模型试验,利用微型土压力计测试了移动挡墙上的土压力,利用数字图像相关法分析土体变形图像得到了剪切应变(滑裂面)、水平和竖向位移等变形特征。结果表明:(1)T模式下,有限宽度土体滑裂面经过移动挡墙墙踵、固定挡墙墙顶,被动土压力值大于库仑被动土压力,位于挡墙下部H/3范围的土压力受B/H影响较大;(2)RB模式下,滑裂面呈现为以挡土墙顶为中心的多道弧线,弧线半径为H/3~H,被动土压力为“鼓”形分布,当B/H≤1.0时,受固定挡墙影响,滑裂面半径缩小;(3)RT模式下,滑裂面线型特征与T模式相似,被动土压力较大值位于挡墙下部,当B/H减少时,挡墙下部土压力值增大,土体滑裂面范围缩小;(4)不同被动变位模式下,土体位移均可形成大小不同的水平土拱、竖向土拱,土拱形状和大小与变位模式、B/H均密切相关,两土拱的外边缘与滑裂面曲线基本一致。  相似文献   

18.
Stress and pore water pressure development during the construction process of dipahragm walls in soft clay. The influence of a diaphragm wall construction on the stress field in a soft clayey soil is investigated by the use of a three‐dimensional FE‐model of seven adjacent wall panels. The installation procedure comprises the excavation and the subsequent pouring of each panel taking into account the increasing stiffness of the placed fresh concrete. The soft clay deposit is described by a visco‐hypoplastic constitutive model considering the rheological properties and the small‐strain stiffness of the soil. The construction process considerably affects the effective earth and pore water pressures adjacent to the wall. Due to concreting, a high excess pore water pressure arises, which dissipates during the following construction steps. The earth pressure finally shows an oscillating, distinct three‐dimensional distribution along the retaining wall which depends on the installation sequence of the panels and the difference between the fresh concrete pressure and the total horizontal earth pressure at rest. In comparison to FE‐calculations adopting the earth pressure at rest as initial condition, greater wall deflections and surface ground settlements during the subsequent pit excavation can be expected, as the average stress level especially in the upper half of the wall is increased by the construction procedure of the retaining structure.  相似文献   

19.
 针对现有地震被动土压力计算方法的局限性与不足,在平面滑裂面假设下,提出采用拟动力法计算填土表面有均布荷载作用下的地震被动土压力,同时得到被动土压力沿墙高的分布曲线。通过分析墙土摩擦角、填土内摩擦角、水平向和竖向地震加速度系数对被动土压力值及其分布的影响,得出地震被动土压力随墙土摩擦角及填土内摩擦角的增大而增大,随水平向及竖向地震加速度的增大而减小。拟动力法计算得到的地震被动土压力值大于Mononobe-Okabe理论的计算值,且所得的地震被动土压力沿墙高呈非线性分布。  相似文献   

20.
两种位移模式下挡墙主动土压力的离散元模拟   总被引:1,自引:0,他引:1  
挡土墙位移模式是影响挡土墙土压力问题的关键因素之一,位移模式不同,土压力大小、分布也不同。文章用离散元软件PFC2D模拟了不同位移模式下墙后填土为砂土时挡墙土压力问题,分析了总土压力随位移变化情况,土压力分布情况及土体滑裂面形状、顶宽等问题。研究结果表明:土压力分布,大小与挡土墙位移模式有关,挡土墙背离土体平移即T模式下土压力分布呈线性、而绕墙底转动即RB模式下土压力基本呈线性分布,挡土墙位移较小时,土体便能达到主动极限状态;T模式下滑裂面为通过墙底的平面,而RB模式下滑裂面为未通过墙底的平面,T模式下滑裂面顶宽大于RB模式下相应值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号