首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 390 毫秒
1.
固相烧结法合成钙钛矿型Li3/8Sr7/16Ta3/4Hf1/4O3(LSTH) 固体电解质材料,制备过程中分别加入过量的碳酸锂,质量分数分别为(0~30 %).通过XRD、SEM、ICP-OES以及EIS测试,表征不同锂过量LSTH固体电解质材料成相、显微形貌以及室温电导率的影响.实验结果表明,配料时,过量一定质量百分数的碳酸锂,能够有效减少烧结过程中因锂挥发而生成的SrTa2O6杂相,提高样品密度和室温电导率.样品最佳锂过量质量百分数为20 %,20 %锂过量样品1 300 ℃烧结10 h为钙钛矿纯相,密度6.5 g/cm3,室温电导率达到3.12×10-4 S/cm.   相似文献   

2.
丁玉石  厉英 《工程科学学报》2021,43(8):1032-1036
高温质子导体固体电解质Ba3Ca1+xNb2?xO9?δ化学性质稳定,中低温电导率较高,具有较好的应用前景。采用固相合成法制备得到了复合钙钛矿相的Ba3Ca1+xNb2?xO9?δ(x=0、0.10、0.18、0.30)材料。随着Ca掺杂量的增加Ba3Ca1+xNb2?xO9?δ样品的电导率先增加后降低,x=0.18的样品电导率最高。Ba3Ca1+xNb2?xO9?δ材料在含氢中的电子空穴迁移数较低,当温度低于750 ℃时,材料中质子导电为主;当温度达800 ℃后,材料中氧离子导电为主。x=0.10的样品质子迁移数最高,随着掺杂量的增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低。   相似文献   

3.
采用热压烧结制备了Li3/8Sr7/16Ta3/4Hf1/4O3钙钛矿型固体电解质, 研究了不同烧结方式对样品性能的影响。通过X射线衍射仪表征材料的晶体结构, 扫描电子显微镜观察组织形貌, 交流阻抗仪测试电化学性能。结果表明:样品为立方KTaO3相, 热压烧结成功合成了钙钛矿结构固体电解质, 相对于常压烧结, 热压烧结制备的样品孔隙更少, 晶粒之间结合更加紧密, 致密度高达94.0%, 离子电导率为4.33×10-4S·cm(T=298K).   相似文献   

4.
本文首先采用溶胶-凝胶法合成出Ag0.05Sr0.95Sc0.175Nb0.025Co0.8O3-δ (S0.95SNC-Ag+)钙钛矿型氧化物,然后利用1%H2O-O2(体积分数)气氛对其进行原位脱溶,制备出Sr0.95Sc0.175Nb0.025Co0.8O3-δ负载Ag0纳米颗粒(S0.95SNC-Ag0)的复合阴极,并考察其作为质子导体固体氧化物燃料电池(H+-SOFC)阴极材料时的电化学性能。通过X射线衍射(XRD)、直流四端子法、X射线光电子能谱(XPS)对原位脱溶前后材料的晶体结构转变、电导率变化、元素价态升降及其他性质的改变进行研究。进一步制备S0....  相似文献   

5.
采用固相反应法制得Al掺杂的固态电解质材料Li6.4Al0.2La3Zr2O12(LALZO),利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和交流阻抗谱等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同烧结方式对材料的结构、微观形貌和电化学性能的影响,探究了固相反应过程机理.研究结果表明:混合料加热到425℃时开始生成立方相LALZO,更高温度下立方相LALZO经由Li0.5Al0.5La2O4和Li2ZrO3等中间相转化生成;425℃预反应后再经1 000℃烧结可得到纯的立方相LALZO;与聚环氧乙烷(PEO)组成复合固态电解质时,该材料在30℃下离子电导率可达3.61×10-5 S/cm,具有良好的电化学性能.  相似文献   

6.
LiTaSiO5(LTSO)是一种新型的快离子导体,但现今合成的该电解质样品室温离子电导率较低。采用固相合成法制备了Li1.1Ta0.9Zr0.1SiO5固态电解质, 研究LiF掺杂对Li1.1Ta0.9Zr0.1SiO5电解质材料结构和性能的影响。结果表明,LiF掺杂能改善晶体的结晶性能,促进晶体的生长和降低晶界的数量,并显著降低孔隙率,提高电解质样品的致密度,从而降低电解质样品的晶粒和晶界电阻,有利于锂离子在晶粒和晶界之中快速迁移,提高材料的整体离子电导率。当LiF加入量为0.4%(质量百分比)时,Li1.1Ta0.9Zr0.1SiO5电解质的相对密度达90.81%,总离子电导率为8.31×10-5 S/cm,扩散激活能为0.203 eV,比未掺杂样品的离子电导率高近2倍。   相似文献   

7.
采用钛酸四丁酯为钛源、一水合氢氧化锂为锂源,利用水热法制备锂离子电池负极材料Li4Ti5O12(LTO),研究了水热后不同烧结温度对LTO相组成、微观形貌及电化学性能的影响。结果表明:当煅烧温度分别为500、550、600、650、700℃时,烧结LTO均为尖晶石型;500、550、600℃烧结LTO的微观形貌为纳米片状结构,当温度升高到650℃时,LTO出现纳米棒状结构,随着温度继续升高,LTO在700℃时生成较厚的纳米片状结构;当烧结温度为650℃时,LTO的比表面积为94.5907 m2·g-1,气孔体积为0.9663 mL·g-1,此时Li4Ti5O12的放电比容量达到最大值240 mAh·g-1;电流密度100 mA·g-1、循环260次条件下,LTO容量保持率达96.45%,电流密度为1和2 A·g-1、循环1000次条件下,LTO容量保持率达92.97%和77.21%。  相似文献   

8.
固体氧化物燃料电池(Solid oxide fuel cell, SOFC)是一种新型的清洁能源,而其阳极材料是固体氧化物燃料电池的最关键的部分,阳极材料的好坏会直接影响SOFC的性能.文中介绍了SOFC阳极材料La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM)的合成方法和性能表征.分别采用甘氨酸-燃烧法和柠檬酸溶胶-凝胶法合成La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM),然后把合成的LSCM放在温度分别是800 ℃、900 ℃、1 000 ℃的马弗炉中进行高温烧结一定的时间,通过对产品进行XRD、SEM、电化学性能分析,得出了采用溶胶-凝胶法合成LSCM后,经1 000 ℃高温煅烧为较优的合成方法和实验条件.   相似文献   

9.
采用溶胶-凝胶法合成NASICON型固体电解质Li1.1Y0.1Zr1.9(PO4)3粉体.研究了不同烧结方式对Li1.1Y0.1Zr1.9(PO4)3电解质的性能影响.通过差热分析仪分析前驱体的热性能,采用X射线衍射仪、扫描电子显微镜、交流阻抗仪对固体电解质的物相、结构及电化学性能进行表征.结果表明,溶胶-凝胶法成功制备出纯相的NASICON型Li1.1Y0.1Zr1.9(PO4)3,并且颗粒均匀;相比传统的无压烧结,SPS烧结明显提高了样品致密度(致密度达94.38 %),室温离子电导率高达8.99×10-5 S/cm.   相似文献   

10.
通过传统固相合成法成功制备了层状钙钛矿结构Ca1+xSm1?xAl1?xZrxO4(x=0.1,0.2,0.3,0.4)微波陶瓷。利用X射线衍射、拉曼光谱、电子背散射衍射、能谱及矢量网络分析表征了Ca/Zr协同置换对微波陶瓷材料晶体结构、微观形貌及介电性能的影响。结果表明,随着x值的增加,晶胞参数(a、c)和晶胞体积(Vcell)增大,理论极化率(αtheo)增加,进而导致了介电常数(εr)和谐振频率温度系数(τf)增大;协同置换引入的适量CaO第二相有利于品质因子(Q×f)的提高。当x=0.2时,Ca1.2Sm0.8Al0.8Zr0.2O4陶瓷呈现出良好的微波性能,介电常数为20.16,品质因子为72489,谐振频率温度系数为?3.46×10?6·℃?1。  相似文献   

11.
以电动汽车车用额定容量为42 A·h的三元方壳锂离子电池单体和模组为研究对象,研究其在加热条件下单体的绝热热失控特性及成组后侧向加热热失控蔓延特性。结果表明,锂离子电池在发生热失控时,内部最高温度可达920 ℃,电池表面和内部最大温差达403 ℃;热失控首先在迎向热流的面触发,随后蔓延至整个电池;满电状态下的锂离子电池内部热失控蔓延时间介于8~12 s;热失控蔓延过程中锂离子电池的温度特征与绝热热失控测试相比存在较大差异性;热失控喷发颗粒物中,LiF及石墨质量分数占80%以上;模组中失控电池产生的总能量中用于自身加热和喷发损失的占90%左右,热失控释放总能量的10%足以触发热失控蔓延。本文为研究三元锂离子电池模组安全设计、热失控蔓延抑制及新能源汽车的火灾事故调查提供了参考。   相似文献   

12.
锂离子电池因锂资源储量有限、分布不均及一定的安全问题,导致其在大型储能领域的应用受限.水系锌离子电池因其资源丰富、安全环保、易于组装以及价格低廉等优势在大规模储能领域具有极大前景.但是由于锌离子与正极材料基体具有较强的静电吸附作用,导致其动力学缓慢以及部分正极材料在水系电解液中存在溶解等问题,限制了水系锌离子电池的发展.在目前的正极材料中,磷酸钒盐因其结构稳定、电压平台高、功率密度高等特点受到研究者的关注.然而,磷酸钒盐作为水系锌离子电池正极材料时,较差的电子电导率和溶解问题,制约其循环稳定性和倍率容量.本文综述各类磷酸钒盐及其衍生物的物相结构、合成方法、储锌性能和储锌机制,归纳提高电化学性能的方法如构建纳米结构、调节电子结构、包覆导电材料、调控电解液等.最后,总结了磷酸钒盐储锌正极材料现阶段存在的挑战,并对其未来的发展方向提出了展望.  相似文献   

13.
以碳酸锂(Li2CO3)为锂源, 磷酸二氢铵(NH4H2PO4)为磷源, 草酸亚铁(FeC2O4·2H2O)为铁源, 柠檬酸(C6H8O7·H2O)为碳源, 采用固相反应法制备橄榄石晶型磷酸铁锂。利用X射线衍射仪, 扫描电子显微镜, 能谱仪, 比表面积分析仪和电化学测试等设备和方法对磷酸铁锂材料的物相组成、结构、形貌和电化学性能进行表征, 研究煅烧温度和保温时间对磷酸铁锂电化学性能的影响, 并通过添加碳对试样进行包覆改性。结果表明, 在煅烧温度为700℃, 保温时间为12 h条件下制备的磷酸铁锂正极材料的电化学性能良好, 碳包覆能有效改善电极材料的性能。包覆碳后的磷酸铁锂电极材料在0.2C充电电流密度下首次放电比容量可达319.2 mAh·g-1; 在1C充电电流密度下循环100次后, 放电比容量保持在168.1 mAh·g-1。  相似文献   

14.
随着电动汽车的不断普及,锂离子电池(LIBs)的安全性备受关注。目前固态锂离子电池具有能量密度高和安全性好的优势,被认为是解决传统液态锂金属电池安全隐患和提高其循环性能的关键材料。然而,单一形式的固态电解质存在离子电导率低、界面阻抗大等问题,限制了固态锂离子电池的发展。近年来,基于无机填料与聚合物电解质的有机-无机复合电解质受到了广泛关注,有机-无机复合固态电解质兼有聚合物与无机填料的优点,一方面可以提高柔韧性,另一方面可以有效提高电池的机械性能。本文归纳总结了有机聚合物与无机金属氧化物复合固态电解质的不同类型,分析了基于不同聚合物与无机金属氧化物复合形成的有机-无机复合固态电解质对锂离子电池复合界面行为、离子电导率、电池机械性能的影响,并对复合固态电解质制备和应用过程中存在的问题和解决方法进行了梳理。最后对聚合物基复合金属氧化物固态电解质未来要重点解决的问题和发展方向进行了预测。  相似文献   

15.
随着新能源汽车及储能行业的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求。富含Li和Mn的层状氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超过250 mA·h·g–1,有希望成为下一代锂离子电池最理想的正极材料。但是,富锂材料仍存在首次循环不可逆容量高、循环性能差和倍率容量低等问题,为解决这些问题,本文阐述了富锂正极材料的结构和电化学反应之间的构效关系,讨论了金属氧化物、金属氟化物、碳、导电聚合物和锂离子导体等涂层材料对富锂正极材料电化学性能的影响规律及作用机理,同时还对以上涂层在富锂正极材料中应用的优缺点进行了总结。最后,对锂离子电池富锂正极材料的包覆改性的未来发展发现作出展望。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号