首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多孔介质中预混火焰燃烧速率的预示   总被引:9,自引:0,他引:9  
本文提出了一种预估多孔介质中预混火焰燃烧速率的方法。在构成气,固两相合一模型的基础上,用光学厚极限条件下的扩散近似法简化其中的热辐射项,从而由基本能量方程导出计算火焰传播速度的迭代关系式,其中包含综合多孔介质传导和辐射的等效导热系数。然后应用此数值迭代法,分别计算出在多孔泡沫陶瓷中层流预混火焰及无多孔介质存在的自由火焰的燃烧速率。  相似文献   

2.
Accurately evaluating the relation between heat transfer performance and the complex structure of porous media is still a difficult task. Most previous fractal models of effective thermal conductivity (ETC) are developed to describe the heat-conducting characteristics of a unit cell or a representative elementary volume in porous media, and few models have paid attentions to the ETC for practical circular tubes made with a porous structure based on fractal theory. This paper proposes a new ETC model for a circular tube made with porous media based on fractals, and the validity of the present model is proved by previous models and testing data in the literature, then the effects of intrinsic thermo-physical properties of each component and pore structures on the ETC are discussed. The analysis results indicate that a circular tube made with porous media can improve its heat-insulating performance by about 25% compared with a common parallel circular tube. This can supply an alternative scheme for pipe insulation design in cold/hot fluid supplying systems or air conditioning systems.  相似文献   

3.
Although highly desirable, accurate prediction of the effective thermal conductivity of high-porosity open-cell porous foam materials has remained to be a challenging problem. Aiming at this thorny obstacle, we have developed a random generation-growth method to reproduce the microstructures of open-cell foam materials via computer modeling, and then solve the energy transport equations through the complex structure by using a high-efficiency lattice Boltzmann method in this contribution. The effective thermal conductivities of open-cell foam materials are thus numerically calculated and the predictions are compared with the existing experimental data. Since the porosity is high, the predicted thermal conductivity caused by thermal conduction is lower than the measured data when the thermal conductivity of either component is very low and the radiation heat transfer is non-negligible. After considering the radiation effect, the numerical predictions agree rather well with the experimental data. The radiation influence is diminishing as the material porosity decreases. In general the effective thermal conductivity of open-cell foam materials is much higher than that of granular materials of the same components due to the enhanced heat transfer by the inner netlike morphology of the foam materials.  相似文献   

4.
A method is proposed for the evaluation of the interfacial conduction heat transfer coefficient in two-temperature macroscopic models of homogeneous fluid-saturated porous media. It is based on the numerical solutions of a microscopic model of unsteady conduction heat transfer in periodic unit cells, with different uniform initial temperatures of the fluid and solid. A novel formulation of the microscopic model in the fully developed regime is also proposed. Results for the variation of interfacial conduction Nusselt number with porosity, fluid–solid thermal conductivity ratio, and fluid–solid thermal diffusivity ratio are presented and discussed for four two-dimensional and two three-dimensional cases.  相似文献   

5.
A numerical work was performed to determine the heat transfer and fluid flow due to buoyancy forces in divided trapezoidal enclosures filled with fluid saturated porous media. In the present investigation, bottom wall was non-uniformly heated while two vertical walls were insulated and the top wall was maintained at constant cold temperature. The divider had constant thermal conductivity. Flow patterns and temperature distribution were obtained by solving numerically the governing equations, using Darcy's law. Results are presented for different values of the governing parameters, such as Rayleigh number for a porous medium, location of the partition, thickness of the partition and thermal conductivity ratio between solid and fluid media. It was observed that the conduction mode of heat transfer became dominant inside the cavity for higher thickness of the partition, low Rayleigh numbers, and low thermal conductivity ratio.  相似文献   

6.
以细观尺度假设条件下砂土多孔/颗粒介质周期性单元结构为几何模型,采用COMSOL Multiphysics软件开展针对不同孔隙率和饱和度、不同边界条件下,固-液-气三相砂土稳态热传导过程有限元数值实验。研究结果表明,砂土热导率随孔隙率的增加而降低,随饱和度的增加而增加,变化速率均逐渐减小;相同孔隙率和饱和度工况下方形单元结构采用恒壁温+绝热+第3类边界条件的组合方式时,热导率反向计算结果最优;基于数值实验结果建立的砂土热导率与孔隙率、饱和度之间的指数、幂律函数关系式计算获得的热导率在低、高饱和度区与实验回归模型预测结果吻合度较高;与理论和试验研究相比,数值模拟/实验可以有效表征孔隙/颗粒尺度砂土导热特性,进而以土壤物理参数为基础建立具有较高精度的砂土表观热导率预测关联式模型。  相似文献   

7.
ABSTRACT

A numerical analysis has been made of the conjugate natural convection in a rectangular enclosure filled with a fluid-saturated porous medium and surrounded with four solid walls. The conductance of the walls is assumed to be much greater than that of the cavity filled with a porous medium. The main objective was to investigate the influences of the ratio of thermal conductivity of the wall to that of the fluid-porous matrix composite, the Darcy-modified Rayleigh number, the Prandtl number, and the aspect ratio. The streamlines and isotherms are presented; also, the local and average Nusselt numbers are presented along the interface between walls and cavity. A non-Darcian model was employed and the numerical method was SIMPLE-C. The numerical results indicate that the wall heat conduction effects decrease the heat transfer rate. When the wall heat conduction is considered, the greater the conductance of the solid walls surrounding the cavity, the greater is the rate of heat transfer.  相似文献   

8.
In this work, the natural convective transport was numerically investigated for nanofluids in a metal-foam cavity. A lattice Boltzmann (LB) model for the nanofluid natural convection in a porous medium was established by using the volume-averaging method. The velocity and temperature fields were obtained, and flow and thermal characteristics of the nanofluid convection in a porous medium were presented. The effects of the Rayleigh Number, the Darcy Number, the porosity, the solid thermal conductivity of porous medium, the nanoparticle thermal conductivity and the nanoparticle concentration on natural convection were examined. The average velocity was put forward to evaluate the convection effect and the natural convection onset was also discussed. It is shown that the Nusselt number of the natural convection increases with an increase in the Darcy number, the Rayleigh number, the porosity and the effective thermal conductivity. The change from the heat conduction regime to the convection regime is clearly shown from the numerical result, which verifies the onset point of the nanofluid natural convection in a porous medium. The highly conductive porous foam and the nanofluid can promote the thermal performance of the natural convection, which own great potential in practical thermal applications.  相似文献   

9.
为了探究在含湿情况下多孔介质有效导热率的变化,基于分形理论,考虑多孔介质在含湿时加热过程中相变的影响,结合加热过程中的热量守恒方程和傅里叶导热定律推导出计算有效导热率的新公式。将该模型相关数据代入进行计算,分析了孔隙率、含湿率、面积分形维数和迂曲分形维数对有效导热率的影响。研究发现,孔隙率与有效导热率呈负相关,含湿率与有效导热率呈正相关,分形维数与有效导热率呈负相关。该研究能够反映多孔介质内的传热进程,对于探究微孔结构物质的传热具有一定的指导意义。  相似文献   

10.
The literature has documented proposals for macroscopic energy equation modeling for porous media considering the local thermal equilibrium hypothesis and laminar flow. In addition, two-energy equation models have been proposed for conduction and laminar convection in packed beds. With the aim of contributing to new developments, this work treats turbulent heat transport modeling in porous media under the local thermal non-equilibrium assumption. Macroscopic time-average equations for continuity, momentum and energy are presented based on the recently established double decomposition concept (spatial deviations and temporal fluctuations of flow properties). Interfacial heat transfer coefficients are numerically determined for an infinite medium over which the fully developed flow condition prevails. The numerical technique employed for discretizing the governing equations is the control volume method. Preliminary laminar flow results for the macroscopic heat transfer coefficient, between the fluid and solid phase in a periodic cell, are presented.  相似文献   

11.
The present work deals with the fluid flow simulation and thermal analysis of a two-dimensional heat recovery system using porous media. A basic high-temperature flow system is considered in which a high-temperature non-radiating gas flows through a random porous matrix. The porous medium, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. It is desirable to have large amount of radiative heat flux from the porous segment in the upstream direction (towards the thermal system). The lattice Boltzmann method (LBM) is used to simulate fluid flow in the porous medium. The gas and solid phases are considered in non-local thermal equilibrium, and separate energy equations are applied to these phases. Convection, conduction and radiation heat transfers take place simultaneously in solid phase, but in the gas flow, heat transfer occurs by conduction and convection. In order to analyze the thermal characteristics of the heat recovery system, volume-averaged velocities through the porous matrix obtained by LBM are used in the gas energy equation and then the coupled energy equations for gas and porous medium are numerically solved using finite difference method. For computing of radiative heat flux in the porous medium, discrete ordinates method is used to solve the radiative transfer equation. Finally the effect of various parameters on the performance of porous heat recovery system is studied.  相似文献   

12.
Abstract

Application of the lattice Boltzmann method has been extended for the analysis of combined transient conduction and radiation heat transfer through highly porous fibrous insulation media. Firstly, LBM has been employed for the analysis of combined mode of transient conduction radiation heat transfer in a 2?D rectangular enclosure containing an absorbing, emitting and scattering medium and results are compared with already published ones. The results have been found in good accord for different values of radiation-conduction parameter, scattering albedo and south (hot) wall emissivity. Furthermore, the proposed LBM for the calculation of effective thermal conductivity of ceramic fiber board has been employed. A random-generation growth method for generating micro morphology of natural ceramic fiber board has been selected. The conductive, radiative and effective thermal conductivity has been numerically estimated using the present LBM. It is found that the predicted effective thermal conductivity for different values of fibrous bulk density is in good agreement with the experimental data.  相似文献   

13.
多孔介质导热的分形模型   总被引:12,自引:0,他引:12  
多孔介质中热量传递与多孔介质内部的几何结构有密切的关系,讨论了多孔介质的分形结构和相关的分形维数,利用能量方程,导出了分形维数为D的有限尺度多孔介质中的广义热传导方程,在此基础上,假定热量在多孔介质中的传导路线也是一种分形结构,提出了一个筒化的多孔介质并联通道分形导热模型,求出了基于分形理论的多孔介质有效导热系数表达式。  相似文献   

14.
In this paper, a novel thermal energy storage (TES) system based on a thermo‐sensitive magnetic fluid (MF) in a porous medium is proposed to store low‐temperature thermal energy. In order to have a better understanding about the fluid flow and heat‐transfer mechanism in the TES system, four different configurations, using ferrofluid as the basic fluid and either copper foam or porous carbon with different porosity (90 and 100 PPI, respectively) as the packed bed, are investigated experimentally. Furthermore, two thermal performance parameters are evaluated during the heat charging cycle, which are thermal storage velocity and thermal storage capacity of the materials under a range of magnetic field strength. It is shown that heat conduction is the primary heat‐transfer mechanism in copper foam TES system, while magnetic thermal convection of the magnetic fluid is the dominating heat‐transfer mechanism in the porous carbon TES. In practical applications in small‐scale systems, the 90‐PPI copper foam should be selected among the four porous materials because of its cost efficiency, while porous carbon should be used in industrial scale systems because of its sensitivity to magnetic field and cost efficiency.  相似文献   

15.
Heat transfer in porous media is important in various engineering fields, including contaminated soil incineration. Most heat transfer models are theoretical in nature. Consequently, this study was undertaken to perform both theoretical and experimental studies of heat transfer in two different sand matrices. A mathematical model based on Fourier's law of heat conduction for a one‐dimensional system with the variable thermal conductivity was developed. The experimental part included heating sand samples placed in a small reactor within an infrared furnace. The transient temperature profiles of the sand layers were monitored by thermocouples. The bulk thermal conductivity was estimated to be linearly proportional to the temperature. The temperature profiles predicted by the model of heat conduction with a variable bulk thermal conductivity was compared by the observed temperatures in Quartz and Sea sands matrices up to 1300 K. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Thermal transport in metal foams has received growing attention in both academic research and industrial applications. In this paper the recent research progress of thermal transport in metal foams has been reviewed. This paper aims to provide the comprehensive state-of-the-art knowledge and research results of thermal transport in open celled cellular metal foams, which covers the effective thermal conductivity, forced convection, natural convection, thermal radiation, pool boiling and flow boiling heat transfer, solid/liquid phase change heat transfer and catalytic reactor. The forced convection and thermal conductivity have been extensively investigated, while less research were performed on two-phase (boiling and solid/liquid phase change heat transfer) and thermal radiation in metal foams. Also most research still treats the metal foam as one type of effective continuous porous media, very few researchers investigated the detailed thermal behaviours at the pore level either by numerical or experimental approaches.  相似文献   

17.
A theoretical model for evaluating the radiative conductivity tensor of a porous media is developed in this paper. The porous media is composed of a transparent fluid and opaque particles with characteristic lengths longer than the radiation wavelength. The main features of the proposed approach are (i) take into account the interaction between conduction and radiation heat transfers, (ii) allow the modeling of the radiative transfer in anisotropy system such as an assembly of cylinders, and (iii) have an easy numerical implementation into the energy equations of the porous media. In order to study the accuracy of the approach, the paper evaluates the model for porous media composed of spheres or cylinders. The predictions of the model agree well with experimental data and with results obtained from finite element simulations. The numerical results also show that the radiative conductivity can be strongly influence by the effect of temperature distribution across the particle surface and by the effect of the multiple scattering of radiation in the porous media.  相似文献   

18.
The effects of nanoparticle shape are first introduced to study the nonsimilar solutions of stagnation point boundary layer flow of water–copper nanofluid saturated in a porous medium. Two cases of solid matrix of porous medium, including glass balls and aluminum foam, are considered. By using a new empirical correlation for the heat capacitance, thermal conductivity, and thermal diffusivity of the nanofluid saturated in a porous medium, the governing equations of the problem are constructed and reduced by dimensionless variables and nonsimilar transformations, and the homotopy analysis method is adopted to solve the partial differential equations. The results indicate that the heat transfer is significantly enhanced with the increase of permeability of the porous medium on the surface of the stagnation point boundary layer flow. In addition, it is found that the empirical shape of the nanoparticle has an impact on the heat transfer.  相似文献   

19.
The influences of thermophysical properties of porous media on superadiabatic combustion with reciprocating flow is numerically studied in order to improve the understanding of the complex heat transfer and optimum design of the combustor. The heat transfer performance of a porous media combustor strongly depends on the thermophysical properties of the porous material. In order to explore how the material properties influence reciprocating superadiabatic combustion of premixed gases in porous media (short for RSCP), a two‐dimensional mathematical model of a simplified RSCP combustor is developed based on the hypothesis of local thermal non‐equilibrium between the solid and the gas phases by solving separate energy equations for these two phases. The porous media is assumed to emit, absorb, and isotropically scatter radiation. The finite‐volume method is used for computing radiation heat transfer processes. The flow and temperature fields are calculated by solving the mass, moment, gas and solid energy, and species conservation equations with a finite difference/control volume approach. Since the mass fraction conservation equations are stiff, an operator splitting method is used to solve them. The results show that the volumetric convective heat transfer coefficient and extinction coefficient of the porous media obviously affect the temperature distributions of the combustion chamber and burning speed of the gases, but thermal conductivity does not have an obvious effect. It indicates that convective heat transfer and heat radiation are the dominating ways of heat transfer, while heat conduction is a little less important. The specific heat of the porous media also has a remarkable impact on temperature distribution of gases and heat release rate. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(5): 336–350, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20120  相似文献   

20.
基于局部热非平衡条件下泡沫金属内热传导融化相变传热的非线性双温度方程,在表征单元尺度上构建双温度分布函数格子Boltzmann模型,其中相变非线性源项处理采用焓法迭代求解。数值模拟了金属骨架与相变材料的温度分布情况,重点分析了孔径、金属骨架与填充材料热传导比和Stefan数等对局部热非平衡效应的影响。模拟结果表明,孔径越大、金属骨架与填充材料热传导比越大,局部热非平衡效应越明显;相变过程的存在,加大了局部热非平衡效应,并且Stefan数越低局部热非平衡效应则越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号