首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
为提高城市快速路网的整体功能和运行效益,利用实时动态交通数据,根据动态交通因素对路段通行时间的影响,将城市快速路网划分为非拥塞和拥塞两种情况,基于安全停车距离和剩余通行能力,分别计算了两种情况的路段通行时间,提出了以行程时间最短为目标的城市快速路网行程时间计算与最优路径选择算法.将该算法应用于西安城市快速路网进行案例分析,结果表明:该算法的最优路径计算结果与实际相符,误差在15%以内;最优路径的距离约为最短路径的1.84倍.   相似文献   

2.
定义路径行程时间可靠性为在交通事故期间内平均路径行驶时间小于事故前路径出行时间乘以可接受拥堵水平的概率,由此导出路网行程时间可靠性.假定事故持续时间服从正态分布并将研究时域划分成相同的时段,在先进出行信息下,利用元胞传输模型进行路段流量加载,给出了每一个时段内路径行程时间的递推式,并在每一个时段内更新1次路径出行时间,出行者根据更新的出行时间运用Logit模型进行路径决策,最后基于Monte-Carlo法模拟求解路网行程时间可靠性.算例结果表明,行程时间可靠性随事故持续时间和方差及需求的增加而减小;可靠性随可接受拥堵水平的增加而增加;在拥堵网络中,包含事故路段的OD间需求越高,可靠性越低.  相似文献   

3.
基于行程时间对交通需求的影响,建立路段交通流模型,对路段交通流量稳定性及通行能力的退化状态进行分析.在出行者的交通需求具有弹性的情况下,路段行程时间越长,交通需求越低.模型中行程时间由道路上的交通状态决定,车辆行驶过程的计算利用MITSIM模型,通过数值模拟方法分析弹性需求对交通流的稳定性及通行能力的影响.仿真结果表明,在交通需求和路段性能相互作用下,路段交通流量趋向于稳定,非饱和状态下的稳定流量随着交通压力的增加逐渐上升到最大通行能力,而饱和状态下的稳定流量小于最大通行能力且交通压力越高通行能力退化越严重.因此在城市路网规划时,应综合考虑路网中各路段通行能力,避免路段通行能力下降.  相似文献   

4.
为准确描述随机路网环境下出行者规避行程时间不确定风险的择路行为,推导了通勤者需求量服从对数正态分布和路段通行能力服从贝塔分布条件下计算期望-超额行程时间的计算公式,并在考虑出行者对行程时间的估计误差和路网服务水平对交通需求影响的基础上,建立了用等价变分不等式表示的多用户弹性随机期望-超额用户平衡模型.算例结果表明:随着需求水平波动程度和路段通行能力退化程度的加剧,当需求方差-均值比从0.5增至2.0、贝塔分布参数(l和m)从90和10变为10和10时,通勤者和非通勤者期望最小理解期望-超额行程时间分别增加了48.5%和99.2%.  相似文献   

5.
为了及时识别出突发事件下城市道路的关键路段,以构建最短应急救援路径,本文提出了一套完整流程.首先,针对路网在应急条件下的贫信息环境特征,设计一种基于模糊综合评判的行程时间估算方法.然后,考虑救援人员的应急心理和经验选择行为,构建面向广义阻抗的GERT(Graph Evaluation and Review Technique)网络模型.最后,运用Dijkstra算法获得救援路径完成关键路段识别.以成都市某区域实际交通网络为算例进行验证,结果表明:基于2种模糊算子估算路段行程速度,其绝对误差为2.722 km/h,精度较高;与传统关键路段识别方法相比,GERT网络模型能更好地反映行程时间和路段拥挤度对路径选择行为的影响(拟合度80.95%),并将重要度识别技术从路网降低到路径层面,效果良好.  相似文献   

6.
从路段实际功能出发,提出基于路段与路径行程时间序列的相关性识别关键路段的方法.借鉴蒙特卡洛思想,以真实数据构造10万条随机路径验证该方法的可行性,并识别出对上海市路网行程时间有关键影响的路段集合.以上述集合为参照,利用模糊聚类及迭代累计平方和算法提取路段行程时间序列特征并构造两个新变量,结合基础属性建立二项Logit模型,从而主动查找关键路段.比较该模型与基础模型、随机分类器查找效果表明:基于最大归一化行程时间曲线聚类,其结果对关键路段识别模型的性能有提升效用;行程时间对数差分序列的结构性变点在路网和路段级别均有明显时间聚集特性,虽然其个数与路段关键性无明显关系,但其与常见波动程度指标相关性小,可保留用于描述行程时间波动常发性和聚集性.  相似文献   

7.
为实现动静态交通和谐统一,构建与停车需求相协调、停车资源时空均衡的路侧泊位动态供给方案,应用图论的方法建立了含有路侧停车网络的车辆运行模型,将路段分为通行路段与路侧停车路段,并根据用户通行性质与运行状态,基于改进的BPR(Bureau of Public Road)函数量化了通行用户与停车用户在常规通行路段和路侧停车路段的通行阻抗。为实现路网整体通行效率最高,以路网中用户总通行时间最短为目标函数,以路网中停车设施利用水平的高效性与空间均衡性为约束,构建了最佳泊位资源配置模型,并应用相继平均算法(Method of Successive Averages, MSA)设计了路网总效率最高的交通流路径分配方案。以典型的Nguyen-Dupuis网络为实例,设计了多模式、动态的停车资源配置方案,量化了用户出行时间与通行需求和停车比例的关系。研究结果表明,当已知路网中的出行起讫点和泊位规划目标时,通过应用该优化求解模型能有效配置路侧停车资源数目,合理规划出行路径,改善用户出行效率。  相似文献   

8.
采用数值仿真方法评价了固定式信号控制、延误最小自适应信号控制与通行能力最大自适应控制3种典型信号控制策略下的路网动态运行效率; 采用双排队模型构建了动态交通流仿真平台, 提出了交叉口流量传输优化模型, 分析了双排队模型中交叉口内交通流运行的状态; 假定用户依据瞬时用户最优原则选择路径, 提出了考虑信号控制惩罚时间的瞬时用户最优约束; 以系统总行程时间、有无交通事件影响的行程时间为评价指标, 研究了低、中、高3级不同交通需求下的信号控制效果。试验结果表明: 在低、中级交通需求下延误最小自适应控制策略的系统总行程时间最小, 比通行能力最大自适应控制在无交通事件影响下总行程时间分别降低0.45%和0.18%, 在有交通事件影响下总行程时间分别降低5.95%和2.52%;在高级交通需求下, 通行能力最大自适应控制总行程时间最小, 对比延误最小自适应控制, 在有、无交通事件影响下系统总行程时间分别降低5.46%、5.31%;对比有无交通事件影响下系统总行程时间变化幅度, 固定式信号控制在不同交通需求下均表现出最高的稳定性; 在低、中级交通需求下, 延误最小自适应控制策略较通行能力最大自适应信号控制策略更稳定, 在高级交通需求下, 两者的稳定性无显著差异。可见, 当交通需求较大时, 应提升交叉口通行能力, 当交通需求较小时, 应降低车辆延误。   相似文献   

9.
从路段实际功能出发,提出基于路段与路径行程时间序列的相关性识别关键路段的方法.借鉴蒙特卡洛思想,以真实数据构造10万条随机路径验证该方法的可行性,并识别出对上海市路网行程时间有关键影响的路段集合.以上述集合为参照,利用模糊聚类及迭代累计平方和算法提取路段行程时间序列特征并构造两个新变量,结合基础属性建立二项Logit模型,从而主动查找关键路段.比较该模型与基础模型、随机分类器查找效果表明:基于最大归一化行程时间曲线聚类,其结果对关键路段识别模型的性能有提升效用;行程时间对数差分序列的结构性变点在路网和路段级别均有明显时间聚集特性,虽然其个数与路段关键性无明显关系,但其与常见波动程度指标相关性小,可保留用于描述行程时间波动常发性和聚集性.  相似文献   

10.
交通事件影响下路网逐日出行动态可靠性   总被引:1,自引:0,他引:1  
为描述交通事件持续期间逐日出行过程中的路网服务性能,构建日变路网逐日出行选择模型及可靠性指标.首先,根据出行经验更新路网阻抗,以准点到达概率最大化调整逐日出行中各出发时刻的路径总流量,以路径累积前景最大为目标调整单条路径在各出发时刻的流量,从而建立考虑出发时刻的逐日出行流量推演模型;其次,以交通事件发生前路网流量稳态时的准点到达概率和路径走行时间为参照基数,定义出发时刻准点到达和路径走行时间动态可靠性,并给出计算方法.最后,用算例验证模型和算法,并比较在出行模型中考虑可靠度时对路网逐日流量分布和路网可靠性的影响.  相似文献   

11.
为考察出行信息对道路网络出行时间可靠性的改善效果,将出行者划分为“有ATIS接收装置”和“无ATIS接收装置”两类,且均以随机方式选择路径,运用混合网络随机用户均衡建模理论构建了信息诱导下的出行路径选择模型.从路段容量的实际变化规律出发,假定其服从截尾正态分布,基于Monte Carlo仿真技术和网络均衡流求解算法,建立了信息影响下的道路网络出行时间可靠性评估方法.数值分析结果表明:道路网络出行时间可靠性随出行信息质量和信息系统的市场渗透率增加而递增,但其边际影响递减;对于交通需求水平高的道路网路,信息的提供对网络出行时间可靠性的改进更加明显.  相似文献   

12.
为研究交通事故影响下路网性能的随机性,定义路网行程时间可靠性为路网在交通事故持续期内平均行程时间小于预定阈值的概率.假定事故持续时间为服从正态分布的随机变量,将给定的事故持续时间离散化为相同长度的子时段,综合运用Logit路径选择准则和路段传输模型,提出了基于Monte-Carlo法的路网行程时间可靠度模拟算法.用一个测试网络来验证算法,其事故持续时间均值为8~20 min、方差为0.5~5.0 min, 子时段出行需求为4.0和4.5辆,时间阈值为事故前走行时间的2.0和2.2倍.研究结果表明:路网行程时间可靠度均随事故持续时间均值的增大而减小;当出行需求为4.5辆、时间阈值为事故前走行时间2.0倍时,行程时间可靠度随着事故时间方差的增大而增大;当需求小于4.5辆、时间阈值大于2.0倍时,可靠度随着时间方差的增大而减小.   相似文献   

13.
以路段失效影响范围界定为研究基础,将路段关键度计算从路段薄弱性和重 要性两方面进行量化:路段薄弱性以路段失效情况下,计算路段失效概率来确定;路段重 要性评价,通过对失效路段后交通网络重构,将局域节点OD对在路段失效影响范围局部 路网结构上重分配,以出行者时间费用变化影响指标F(U fa) ,局部路网路段交通负荷变化 影响指标F(S fa) 两方面作为评价指标来计算路段重要度.该方法符合路段失效后路网的 变化情况,有效避免了目前时变性的OD数据难以获取的问题,解决了现有评价指标选取 时的单一性问题.经过实验证明,该算法能够有效地应用于大规模路网结构路段关键度快 速计算,为关键路段识别、道路封闭影响评价等提供理论依据.  相似文献   

14.
为描述交通事故影响下路网中走行时间与用户择路概率的相互作用及其演变规律,建立了基于事故路段及非事故路段流量状态及LOGIT原则的拟动态模型.利用分流合流模型及速度—密度函数,分别建立路段容纳车辆数和非事故路段走行时间模型,通过分析事故路段交通流的演化过程,利用交通波理论估计排队长度 ,建立事故路段走行时间模型.结果表明:事故发生前,经过一定的模拟时段后,路网交通流趋近稳定,各条路径的选择概率趋于平衡;事故持续时段内,排队长度、路径走行时间、路径选择概率相互影响,且均呈现出震荡状态;事故清除后,路径走行时间持续下降;排队完全消散后,经过一定时段稳定后的路径走行时间和路径选择概率达到新的平衡.  相似文献   

15.
步行和自行车等外界因素对机动车流的影响也具有随机性,但是这种影响更多地表现为可预见性和可控制性(尤其从交通管理的角度来看),可以说这种影响将导致可预见性的路段实际通过能力降级,并且可预见性特征使得这种影响不同于随机用户平衡中路段旅行时间的感知误差.笔者通过区分路段通过能力降级因素为内因(路段上车流量增加导致道路服务水平降级)和外因(由与路段上与车流量无关的外部因素,如随意过街人流、自行车流等外部因素,引起的道路通过能力降级),并且区分路段旅行时间为通行能力降级路段上行程时间和排解交通拥堵花费的滞留时间两个构成部分的基础上,建立了考虑自行车步行影响的交通平衡综合分析模型;通过对路段参数敏感性分析和实例对照,既展示了该综合分析模型-路径期望旅行时间平衡分析模型与确定性网络用户平衡分析模型的差异性,又展示了路径期望旅行时间平衡分析模型能较好地再现人们对道路路段通行能力降级情形下的车流路径选择行为.  相似文献   

16.
基于均匀分布的路段容量,分析了退化路网中路段行程时间的随机变动,构建了概率用户均衡交通分配模型,证明了等价数学规划模型解的等价性,设计了模型求解算法.在此基础上,建立了路段、路径及OD对行程时间可靠性计算模型.最后,在一简单网络上进行了计算分析.  相似文献   

17.
To estimate arterial link traffic condition based on probe vehicles, it is necessary to investigate the fluctuation characteristics of road travel time with traffic condition. On the basis of micro traffic simulation model, this paper analyzes the fluctuation of road travel time with traffic condition, and examines whether the mean travel time can reflect the variation of traffic conditions including free flow, congestion to traffic jam. As a conclusion, (1) mean link travel time can be used to identify free flow, congestion, and traffic jam; (2) mean link travel time divides congestion condition, but cannot subdivide free flow condition; (3) in the condition of congestion, travel time is distributed as a two-peak mode, and the average travel time is difficult to be estimated by small size sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号