共查询到19条相似文献,搜索用时 600 毫秒
1.
小波神经网络在房地产价格指数预测中的应用 总被引:4,自引:0,他引:4
随着房地产价格指数的作用充分显现,探求预测房地产价格指数的有效方法是需深入研究的方向。该文以中房上海住宅价格指数为例,首先对房地产价格指数序列性质进行分析,表明房地产价格指数是具有非线性特征的非平稳时间序列。采用小波神经网络对房地产价格指数进行预测,并将预测结果与指数平滑法和RBF神经网络预测做了对比。采用MATLAB对拟合和预测过程进行仿真。结果指标表明,在大样本数据的情况下,采用小波神经网络对房地产指数进行预测能够获得较好的效果。 相似文献
2.
针对不同季节水华生长的不同特点,在对水华生长规律研究的基础上,运用小波分析对表征水华的叶绿素信号进行降噪处理,建立一种结合小波变换与神经网络相结合的水华预测模型(WANN模型),该模型既有神经网络的自学习能力特性,又有小波的局部特性,并将其应用到北京夏季河湖水华预测中。通过小波多分辨率分析,对样本包含的信息进行充分挖掘,提取反映其变化规律的成分,有效避免了原始数据中噪声对网络的干扰,提高网络的性能,WANN模型预测结果与BP网络预测结果对比,具有较高的预测能力,从而获得相对理想的预测效果。 相似文献
3.
基于下一代网络NGN(Next Generation Network)的运行环境,该文提出了一个的基于小波神经网络的IP流量预测方法。在神经网络预测模型中,神经网络中的转移函数使用小波函数来替代,从而建立小波基神经网络;同时,通过使用小波多分辨率方法将原始流量信号分解成不同频率成分的分量信号,然后使用分量信号作为训练样本训练小波基神经网络。通过前述方法建立NGN流量预测模型,并根据实际流量数据预测一天的流量。实验结果表明本方法相较未采用小波的神经网络预测方法,能显著提高流量预测精度。 相似文献
4.
为了解决投影寻踪(PP)需水预测模型的高维、非正态、非线性参数优化问题,提高需水预测的精度,尝试用基于网格划分的自适应连续域蚁群算法(ACA)在不同拟合和预测时长内对模型参数进行优化组合,并运用该模型进行年需水量预测。基于改进蚁群算法的投影寻踪需水预测模型参数优化进行了实例仿真。对基于改进蚁群算法的预测精度与基于人工免疫算法(AIA)和BP神经网络的模型(BPANN)参数优化结果分别进行了比较,实验结果表明:1)这三种算法的拟合精度相对误差绝对值分别小于2%、10%和10%;2)预测精度相对误差绝对值分别小于6%、11%和12%;3)改进蚁群算法能收敛到全局最优解,收敛速度较快。因此,改进蚁群算法的投影寻踪需水预测结果明显优于人工免疫算法和BP神经网络。该方法可推广到其他类似的高维非线性问题上。 相似文献
5.
通过对影响黄金价格变动的主要因素的研究,提出一种基于小波神经网络的黄金价格预测模型。给出了具体的网络学习算法,并结合算法对黄金价格进行预测。为验证模型有效性,进行了对比测试。分析结果表明,小波神经网络模型比传统的BP神经网络模型具有收敛速度快、预测精度高的特点。 相似文献
6.
7.
8.
张坤 《计算机与数字工程》2010,38(3):176-178
文章提出一种基于小波神经网络的粮食产量预测模型。给出具体的网络学习算法,并结合算法对我国粮食产量进行预测。为验证模型有效性,进行了对比测试。分析结果表明,小波神经网络模型比传统的BP神经网络模型具有收敛速度快,预测精度高的特点。 相似文献
9.
GMDH是一种具有自组织特征的数据处理方法,适用于非线性系统的建模,股指是一种重要的金融数据,具有混沌特性。该文将相空间重构引入了GMDH神经网络的建模中,并将之应用于道琼斯等股指的预测。同BP冲经网络方法及一阶局域预测法相比,GMDH获得了更好的预测效果。 相似文献
10.
11.
12.
针对实际交通流变化的不稳定性和复杂性的特点,应用交通流预测模型获取更准确的交通流信息,是智能交通领域的一个研究热点。提出一种基于小波分析与神经网络结合的预测模型。模型主要思想是通过小波多分辨率分析和Mallat算法对原始交通流数据进行平滑降噪处理,处理过程选用db10小波和软阈值去噪函数使得交通流曲线更加平滑稳定,更能真实反映交通流的真实情况;再采用激活函数为Tan-Sigmoid,训练函数为trainlm,各层神经元节点数为1-12-1的三层BP神经网络对消噪后的交通流数据进行训练,用训练好的预测模型对实际交通流信息进行预测,最后获取准确的交通流信息。实验结果表明,采用小波分析与BP神经网络结合的方法得到的预测结果平均相对误差为0.03%,最大相对误差为0.39,拟合度(EC)达到0.96。仅使用BP神经网络预测模型对交通流数据进行预测后得到的预测结果的平均相对误差为0.08%,最大相对误差为0.89%;实验对比采用BP神经网络预测模型和卡尔曼滤波、GM(1,1)预测模型对交通流的预测,BP神经网络预测模型的误差指标大大减小,拟合度大大提高,有较好的准确性和可行性,能较准确地反映交通流真实情况。而经过小波去噪与BP神经网络结合的预测模型提高了预测精度,为交通流的实时动态预警提供了更加准确真实的情况。 相似文献
13.
14.
提出了一种粗糙小波网络分类器的模型。其过程为:利用粗糙集理论获取分类知识,根据训练样本属性值离散化、属性约简和值约简来构造粗糙小波网络分类器。该分类器可以有效地克服粗糙集规则匹配方法抗噪声能力和规则泛化能力差的缺点;同时可简化小波网络的结构,加快网络的训练速度。并详细介绍了该分类器用于入侵数据识别的步骤和仿真实验结果。 相似文献
15.
张立仿 《计算机与数字工程》2014,(4):660-663
由于BP神经网络本质上采用的是梯度下降算法,具有收敛速度慢、容易陷入局部极小点等缺陷.针对这种情况,用具有良好全局搜索能力的遗传算法来改进BP神经网络模型,对神经网络的初始权值和阈值进行优化.仿真结果表明,遗传BP神经网络具有良好的预测效果,预测精度比传统的BP神经网络要高,误差更小,说明了遗传BP神经网络对网络流量预测是高效可行的. 相似文献
16.
林婷婷 《计算技术与自动化》2022,41(1):79-81
基于sigmoid激活函数,建立了一种BP神经网络模型。通过对某高中2006年至2015年间的高考平均数据样本进行学习,修正了权值和阈值。系统最大相对误差为0.22%,关联度为0.6667,小误差概率为0.98,方差比为0.0002,预测结果精度为高。用于2016年至2020年间该校高考平均成绩的预测中发现,预测结果与实际结果的最大绝对误差仅为2分。对该校2021年的高考平均成绩进行了预测,最终预测结果为571分。 相似文献
17.
18.
徐维维 《数字社区&智能家居》2009,(23)
股票交易作为证券投资的一种,也越来越成为广大投资者的一个重要投资手段。股票市场是一个效益与风险并存的地方,没有分析的投资是盲目的投资。但股票市场受随机因素影响很大,利用线性很难分析。该文利用小波与神经网络作为一种大规模并行处理的非线性系统,依据数据本身的内在联系建模,具有良好的适应性与自学习能力、较强的抗干扰能力,在股票价格的短期预测中已取得了令人比较满意的成绩。 相似文献