首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver. Hepatic bile salt metabolism was also analyzed. Total bile flow was significantly increased by SL, primarily due to an increase in bile salt-independent bile flow, whereas bile salt secretion was decreased. SL did not produce any choleresis in TR(-) rats. SL decreased the de novo bile salt synthesis rate in concordance with impaired microsomal cholesterol 7 alpha-hydroxylase activity, thus leading to a decrease in endogenous bile salt pool size. In contrast, the maximum secretory rate of tauroursodeoxycholate as well as expression of Bsep protein detected by Western blotting were not affected. Thus, decreased bile salt availability for canalicular transport rather than transport capability itself likely explains reduced biliary secretion of bile salts. Biliary secretion of glutathione, an endogenous substrate of Mrp2, and HCO(3)(-), the AE2 substrate, were increased by SL, as a main factor explaining enhanced bile salt-independent bile flow. Western blot studies revealed increased expression of Mrp2 in response to SL whereas AE2 content remained unchanged. Enhanced activity and expression of Mrp2 was confirmed by analyzing the excretion rate of dinitrophenyl S-glutathione, an exogenous substrate of Mrp2, in isolated hepatocytes and by immunofluorescence microscopy, respectively. We conclude that SL increased bile flow mainly by increasing the biliary secretion of glutathione species and HCO(3)(-); increased expression of Mrp2 is also involved.  相似文献   

2.
Abstract

1. The present study was to investigate the effects of giving N-acetylcysteine (NAC) alone and in combination with either glycyrrhizin (GL), silibinin (SIB) or spironolactone (SL) on the plasma pharmacokinetic (PK) profiles, hepatic exposure, biliary excretion and urinary excretion of acetaminophen (APAP) and its major metabolite, acetaminophen glucuronide (AG).

2. Groups of rats (n?=?5) were pretreated with oral doses of either NAC, NAC?+?GL, NAC?+?SIB or NAC?+?SL on five occasions every 12?h. At 1?h, after the last dose, they received APAP (200?mg/kg) by intraperitoneal injection. Blood, bile, liver and urine samples were collected at various times after APAP injection and analyzed for APAP and AG by HPLC. NAC alone and NAC?+?SIB did not significantly change the PK profiles of APAP and AG. In contrast, NAC?+?GL decreased the biliary excretion of APAP and AG leading to accumulation of APAP in the liver and systemic circulation whereas NAC?+?SL [multidrug resistance associated 2 (Mrp2) inducer] increased the biliary excretion of AG and decreased the hepatic exposure to APAP and AG.

3. Our results suggest that Mrp2 inhibitor GL should be discouraged with NAC to treat APAP hepatotoxicity. Such PK drug–drug interactions should be considered in the treatment of APAP-induced liver injury.  相似文献   

3.
4.
The ability of the liver and small intestine for secretion of dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), into bile and lumen, respectively, as well as expression of Mrp2 in both tissues, were assessed in 70-75% hepatectomized rats. An in vivo perfused intestinal model was used. A single i.v. dose of 30 micromol/kg b.w. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered and its glutathione conjugate, DNP-SG, was determined by HPLC in bile and intestinal perfusate. One and seven days after hepatectomy, biliary excretion of DNP-SG was decreased by 90 and 50% with respect to shams, respectively, when expressed per mass unit. In contrast, intestinal excretion was increased by 63% or unchanged one and seven days post-hepatectomy, respectively. Tissue content of DNP-SG 5 min after CDNB administration was substantially decreased in liver and significantly increased in intestine, one day post-hepatectomy. Western and immunofluorescence studies revealed preserved levels and localization of Mrp2 in both tissues from hepatectomized animals, irrespective of the time analyzed. In spite of preserved expression of Mrp2, the higher availability of DNP-SG in intestinal cells, likely as a consequence of increased glutathione-S-transferase-mediated conjugation of CDNB, may explain the in vivo findings. Further experiments in isolated hepatocytes suggested that decreased synthesis of DNP-SG rather than altered canalicular transport is responsible for the substantial impairment in excretion of this compound into bile. Taken together, these results indicate that the intestine may partially compensate for liver DNP-SG disposition, particularly shortly after surgery, while liver capability is recovering.  相似文献   

5.
Liver dysfunction affects the pharmacokinetics of drugs. The liver plays an important role in drug excretion as well as drug metabolism and pharmacokinetics. In the present study, the relationship between changes in the cefmetazole (CMZ) excretory pathway and the degree of liver dysfunction induced by CCl(4) treatment was investigated. CMZ is mainly excreted as an unchanged form in feces in control rats. Depending on the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), urinary CMZ excretion was increased, whereas fecal CMZ excretion was decreased in rat with liver dysfunction. The AUC of CMZ in rats with severe liver dysfunction was approximately 2-fold higher than that in control rats. Since drug transporters could be involved in drug excretion, changes in the expression of representative hepatic drug transporters in liver dysfunction were investigated by rat DNA microarray. Basolateral solute carrier transporters such as Ntcp, Oct1, and Oatp2 were decreased and basolateral ATP-binding cassette transporters such as Mrp3 and Mrp4 were increased by the CCl(4) treatment. On the other hand, canalicular Mrp2 and Bsep were decreased, but Mdr1 was increased. However, the transporter system for CMZ has not been identified yet. In conclusion, we clarified that the fecal and urinary excretory profiles of CMZ were changed clearly depending on the serum AST and ALT levels in liver dysfunction. The changes in the CMZ excretory pathway might be responsible for the changes in the expression of drug transporters.  相似文献   

6.
The purpose of the current study was to determine whether glycyrrhizin (GL) maintains hepatic glutathione (GSH) levels by inhibiting GSH biliary secretion in normal rats. The effects of glycyrrhizin on hepatic glutathione content, bile flow and biliary secretion of glutathione were examined. Because glutathione is a substrate for multidrug resistance associated protein‐2 (Mrp2/ABCC2), the inhibitory effects of GL on Mrp2 in isolated perfused rat liver and in Mrp2‐expressing Sf9 membrane vesicles were also examined using the Mrp2 substrate methotrexate (MTX) and estradiol‐17‐β‐glucuronide (E217G). The hepatic content of glutathione in rats following GL perfusion (43.7 µmol/l) in isolated liver perfusion and GL intravenous treatment (25 mg/kg) was significantly higher than that for the control. A marked and dose‐dependent decrease in the excretion of glutathione was observed. In addition, the secretion rate of MTX was decreased by 57% in isolated liver perfusion in GL‐treated rats. Moreover the ATP‐dependent uptake of E217G by Mrp2 membrane vesicles was decreased by 75.9% in the 20 µm GL group and by 60.5% in the 2 µm GL group. In conclusion, glycyrrhizin increases hepatic glutathione content possibly through inhibition of Mrp2 which then reduces the biliary excretion of glutathione. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Acute exposure of acetaminophen (APAP), a widely used analgesic and antipyretic drug, causes severe renal damage and no specific agent has been reported so far that plays any beneficial role in this organ pathophysiology. In the present study, the protective role of taurine on APAP-induced nephrotoxicity was investigated in mice. In order to induce acute nephrotoxicity, APAP was administered at a single dose of 2 g/kg body weight orally to male adult albino mice of Swiss strain. APAP exposure for 24 h significantly increased plasma level of blood urea nitrogen (BUN), creatinine, uric acid, TNF-α, NO production, urinary γ-glutamyl transpeptidase (γ-GT) activity, total urinary protein and urinary glucose level accompanied by a decrease in Na+–K+–ATPase activity. Moreover, APAP administration significantly increased MDA, protein carbonylation, GSSG level, intracellular ROS production and cytochrome P450 enzyme (CYPP450) activity. The same exposure decreased GSH level, ferric reducing/antioxidant power (FRAP) as well as the activities of antioxidant enzymes indicating that APAP-induced renal damage was mediated through oxidative stress. Besides, APAP exposure significantly reduced mitochondrial membrane potential and induced up-regulation of CYP2E1 in renal tissues although JNK did not play any significant role in this APAP-induced renal pathophysiology. Caspase 9/3 immunoblot and DNA fragmentation analyses showed that APAP-induced renal cell damage was mostly necrotic in nature, although some apoptosis also occurred simultaneously. Taurine treatment both pre and post (150 mg/kg body weight for 3 days, orally) to APAP exposure, however, significantly reduced APAP-induced nephrotoxicity through its antioxidant properties, urinary excretion of APAP and suppression of CYP2E1. Results suggest that taurine might be a potential therapeutic candidate against APAP-induced acute nephrotoxicity.  相似文献   

8.
The biliary excretion of acetaminophen (APAP) is reduced in transport deficient (TR) hyperbilirubinemic rats lacking the multidrug resistance-associated protein 2 (Mrp2). This mutant strain of Wistar rats has impaired biliary excretion of organic anions and increased hepatic glutathione. The rational for this study was to determine if there is an altered risk for liver damage by APAP in the absence of Mrp2. Therefore, the susceptibility of TR rats to APAP hepatotoxicity was investigated. Male Wistar and TR rats were fasted overnight before APAP treatment (1 g/kg). Hepatotoxicity was assessed 24 h later by plasma sorbitol dehydrogenase activity and histopathology. In other studies, TR rats received buthionine sulfoximine before APAP to reduce hepatic glutathione to values similar to those in Wistar rats. mRNA expression of APAP metabolizing enzymes was also measured in naïve animals. Wistar rats treated with APAP showed significant elevations in plasma sorbitol dehydrogenase activity, while no increases in enzyme activity were observed in TR rats. Histopathology was in agreement. Hepatic non-protein sulfhydryls were significantly lower in Wistar rats receiving APAP than in TR rats. TR rats treated with buthionine sulfoximine and APAP showed dramatic increases in hepatotoxicity. TR rats had increased mRNA expression of several APAP metabolizing enzymes. Mrp2 expression not only is important in biliary excretion, but also influences the toxic potential of reactive intermediates by controlling intrahepatic GSH and possibly drug metabolism.  相似文献   

9.
Development of resistance to toxic effects of acetaminophen (APAP) was reported in rodents and humans, though the mechanism is only partially understood. We examined in rats the effect of administration with subtoxic daily doses (0.2, 0.3, and 0.6 g/kg, i.p.) of APAP on enterohepatic recirculation and liver toxicity of a subsequent i.p. toxic dose of 1 g/kg, given 24 h after APAP pre-treatment. APAP and its major metabolite APAP-glucuronide (APAP-Glu) were determined in bile, urine, serum and liver homogenate. APAP pre-treatment was not toxic, as determined by serum markers of liver damage and neither induced oxidative stress as demonstrated by assessment of ROS generation in liver or glutathione species in liver and bile. APAP pre-treatment induced a partial shift from biliary to urinary elimination of APAP-Glu after administration with the toxic dose, and decreased hepatic content and increased serum content of this conjugate, consistent with a marked up-regulation of its basolateral transporter Mrp3 relative to apical Mrp2. Preferential secretion of APAP-glu into blood decreased enterohepatic recirculation of APAP, thus attenuating liver exposition to the intact drug, as demonstrated 6 h after administration with the toxic dose. The beneficial effect of interfering the enterohepatic recirculation was alternatively tested in animals receiving activated charcoal by gavage to adsorb APAP of biliary origin. The data indicated decreased liver APAP content and glutathione consumption. We conclude that selective up-regulation of Mrp3 expression by APAP pre-treatment may contribute to development of resistance to APAP hepatotoxicity, at least in part by decreasing its enterohepatic recirculation.  相似文献   

10.
The effects of a chronic aluminum (Al) exposure on biliary secretory function, with special emphasis on hepatic handling of non-bile salt organic anions, was investigated. Male Wistar rats received, intraperitoneally, either 27 mg/kg body weight of Al, as Al hydroxide [Al (+) rats], or the vehicle saline [Al (-) rats] three times a week for 3 months. Serum and hepatic Al levels were increased by the treatment (approximately 9- and 4-fold, respectively). This was associated with enhanced malondialdehyde formation (+110%) and a reduction in GSH content (-17%) and in the activity of the antioxidant enzymes catalase (-84%) and GSH peroxidase (-46%). Bile flow (-23%) and the biliary output of bile salts (-39%), cholesterol (-43%), and proteins (-38%) also decreased. Compartmental analysis of the plasma decay of the model organic anion bromosulphophthalein revealed that sinusoidal uptake and canalicular excretion of the dye were significantly decreased in Al (+) rats (-53 and -43%, respectively). Expression of multidrug resistance-associated protein 2 (Mrp2), the main, multispecific transporter involved in the canalicular excretion of organic anions, was also decreased (-40%), which was associated with a significant decrease in the cumulative biliary excretion of the Mrp2 substrate, dinitrophenyl-S-glutathione (-50%). These results show that chronic Al exposure leads to oxidative stress, cholestasis, and impairment of the hepatic handling of organic anions by decreasing both sinusoidal uptake and canalicular excretion. The alteration of the latter process seems to be causally related to impairment of Mrp2 expression. We have addressed some possible mechanisms involved in these deleterious effects.  相似文献   

11.
Objective Cefditoren,a third-generation cephalosporin antibiotics,has been used in clinic extensively.Whether Mrp2 or other canalicular transporters such as Bcrp and P-gp are involved in the biliary excretion of cefditoren is unknown.This study is performed to investigate the role of the canalicular transporters in the biliary excretion of cefditoren and the effect of cefditoren on expression levels of some hepatic transporters.Methods We examined the hepatobiliary disposition of cefditoren using probenecid,novobiocin and verapamil as the inhibitors of Mrp2,Bcrp and P-gp respectively in perfused rat livers.The concentration of cefditoren in the perfusate and bile were determined by RP-HPLC with ultraviolet detection at 295nm using a mobile phase composed of 0.1% ammonium acetate-methanol(65∶35).We also investigated the effects of cefditoren on expression of hepatic transporters.The change in mRNA of main canalicular transporters was investigated by RT-PCR and Western blot after administration of cefditoren.Results The values for the hepatic extraction ratio did not change,whereas cumulative biliary excretion rates of cefditoren were significantly reduced to 43.78% and 79.52% over 25 min in the perfused probenecid and novobiocin rats,respectively.After oral administration of cefditoren,the expression levels of Mrp2,Bcrp,Oat2 mRNA were markedly up-regulated,while Mdr1a and Oct1 mRNA were down-regulated by RT-PCR.In concordance with RT-PCR results,Mrp2 expression level was up-regulated by Western blot.Conclusions Mrp2 and Bcrp mediated the biliary excretion of cefditoren,whereas P-gp had no contribution to the transportation of cefditoren into bile.The expression levels of Mrp2,Bcrp and Oat2 mRNA were up-regulated and the expression levels of Mdr1a and Oct1 mRNA were down-regulated by cefditoren.These results provide important data for drug-drug interaction.  相似文献   

12.
Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury.  相似文献   

13.
We evaluated the effect of ethynylestradiol (EE) administration (5 mg/kg b.wt. s.c., for 5 consecutive days) on the expression and activity of multidrug resistance-associated protein 3 (Mrp3) in rats. Western blotting analysis revealed decreased Mrp2 (-41%) and increased Mrp3 (+200%) expression by EE. To determine the functional impact of up-regulation of Mrp3 versus Mrp2, we measured the excretion of acetaminophen glucuronide (APAP-glu), a common substrate for both transporters, into bile and perfusate in the recirculating isolated perfused liver (IPL) model. APAP-glu was generated endogenously from acetaminophen (APAP), which was administered as a tracer dose (2 micromol/ml) into the perfusate. Biliary excretion of APAP-glu after 60 min of perfusion was reduced in EE-treated rats (-80%). In contrast, excretion into the perfusate was increased by EE (+45%). Liver content of APAP-glu at the end of the experiment was reduced by 36% in the EE group. The total amount of glucuronide remained the same in both groups. Taken together, these results indicate that up-regulation of Mrp3 led to an exacerbated basolateral versus canalicular excretion of conjugated APAP in IPL. We conclude that induced expression of basolateral Mrp3 by EE may represent a compensatory mechanism to prevent intracellular accumulation of common Mrp substrates, either endogenous or exogenous, due to reduced expression and activity of apical Mrp2.  相似文献   

14.
15.
Efflux transporters are responsible for the excretion of numerous xenobiotics and endobiotics and thus play an essential role in proper liver and kidney function. Nonalcoholic fatty liver diseases (NAFLDs) comprise a spectrum of disorders that range from simple fatty liver (SFL) to nonalcoholic steatohepatitis (NASH). Although the precise events leading to NAFLD are unclear, even less is known about the effects on efflux transporter expression and drug disposition. The purpose of this study was to determine the effect of NAFLD on efflux transporter expression in rat liver as well as on acetaminophen (APAP) metabolite excretion. To simulate SFL and NASH, rats were fed either a high-fat (HF) or a methionine- and choline-deficient (MCD) diet for 8 weeks. In the livers of MCD rats, there were striking increases in both mRNA and protein levels of multidrug resistance-associated protein (Mrp) 3, Mrp4, and breast cancer resistance protein, as well as increased Mrp2 protein. After administration of a nontoxic dose of APAP, biliary concentrations of APAP-sulfate, APAP-glucuronide (APAP-GLUC), and APAP-glutathione were reduced in MCD rats. The effects of the HF diet on both transporter expression and APAP disposition were by comparison far less dramatic than the MCD diet-induced alterations. Whereas APAP-sulfate levels were also decreased in MCD rat plasma, the levels of the Mrp3 substrate APAP-GLUC were elevated. Urinary elimination of APAP metabolites was identical between groups, except for APAP-GLUC, the concentration of which was 80% higher in MCD rats. These studies correlate increased hepatic Mrp3 protein in the MCD model of NASH with increased urinary elimination of APAP-GLUC. Furthermore, the proportional shift in elimination of APAP metabolites from bile to urine indicates that MCD-induced alterations in efflux transporter expression can affect the route of drug elimination.  相似文献   

16.
Recently, sandwich-cultured (SC) rat hepatocytes have been used as an in vitro model to assess biliary excretion of drugs and xenobiotics. The purpose of the present study was to validate the use of SC rat hepatocytes for the in vitro assessment of P-glycoprotein (P-gp)-mediated biliary drug excretion. The specific and fluorescent P-gp substrate rhodamine 123 (Rh123) and the P-gp substrate digoxin were selected as model compounds. Rh123 and digoxin accumulation and Rh123 efflux under standard and Ca(2+)-free conditions were quantified in SC rat hepatocytes to determine substrate secretion into canalicular networks in vitro. The major role of P-gp in the biliary excretion of these compounds was confirmed by inhibition experiments with the potent P-gp inhibitor GF120918. Hepatocyte culture conditions, including media type and time in culture, significantly affected Rh123 biliary excretion. P-gp expression, as assessed by Western blot, was increased with culture time. Dexamethasone (an in vivo inducer of P-gp) concentrations ranging from 0.01 to 1 microM in the cell culture medium did not influence P-gp expression or Rh123 biliary excretion. Rh123 and digoxin biliary clearance values, predicted from SC rat hepatocyte data, were consistent with values reported in vivo and in isolated perfused rat liver studies. In conclusion, the results of this study demonstrate the utility of SC rat hepatocytes as an in vitro model to study and predict the biliary excretion of P-gp substrates.  相似文献   

17.
18.
The involvement of the canalicular multidrug resistance protein 2 (Mrp2) in the hepatobiliary excretion of acetaminophen (APAP)-glutathione (GSH) conjugate and its derivatives was investigated using transport-deficient (TR- rats. Although no differences in the biliary concentration of APAP itself were detected between normal Wistar and TR- rats, significant differences in the biliary disposition of several conjugated metabolites of APAP were detected. APAP-GSH was virtually absent in bile from TR- rats. Also, biliary concentrations of APAP-mercapturate (NAC; N-acetylated l-cysteine) and APAP-GLU were significantly reduced in TR- rats. No differences in the biliary concentration of APAP-cysteinylglycine/cysteine (CG/CYS) were detected between normal and mutant rats. The cumulative amounts of APAP-CG/CYS and APAP-NAC excreted in urine of mutant rats were decreased, whereas APAP-GLU was markedly increased. Analysis of liver samples revealed that APAP-GSH and APAP-NAC accumulate in mutant rat livers. Our results support the direct involvement of Mrp2 in the hepatobiliary excretion of several conjugated metabolites of APAP, including APAP-GSH and APAP-NAC, and provide relevant information on processes that may be involved with both their hepatic basolateral transport and renal elimination.  相似文献   

19.
20.
The large interspecies differences of hepatobiliary transport present a challenge for the allometric prediction of human biliary excretion for drug candidates primarily cleared via hepatobiliary secretion. In the present study, we determined the metabolic stabilities of common fluorescent substrates of hepatobiliary efflux transporters and developed a rapid efflux assay to determine the functional activities of MRP/Mrp, BCRP/Bcrp and P-gp in hepatocytes of four species. The specificities of transporter-mediated dye efflux were confirmed by selective transporter inhibitors. Among tested species, transporter-specific dye efflux kinetics was consistent between freshly isolated and cryopreserved hepatocytes. Hepatocyte elimination half-lives of MRP/Mrp substrates GS-MF and calcein were observed in the rank order of human>monkey>dog>rat. The fourfold higher MRP/Mrp substrate efflux rate of rat hepatocytes compared to human is likely due to the species-specific functional differences of MRP2/Mrp2 expressed on the canalicular membrane. We also observed efficient BCRP-mediated pheophorbide A (PhA) efflux by human and dog hepatocytes, while PhA extrusion in monkey and rat hepatocytes appeared limited. P-gp function measured by DiOC2(3) efflux was minimal in hepatocytes of all origins and no significant species differences were detected. Our results demonstrated marked differences in hepatocyte MRP/Mrp and BCRP/Bcrp activities across species, indicating that they may contribute to the species differences of in vivo hepatobiliary excretion. These results also suggest the potential utility of primary hepatocytes, either fresh or cryopreserved, as an in vitro model to predict interspecies differences in the biliary transport of MRP/Mrp and BCRP/Bcrp substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号