首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radix Scutellariae (RS) is a herbal medicine with various pharmacological activities to treat inflammation, respiratory and gastrointestinal infections, etc. In this study, a rapid, sensitive and selective UPLC‐ESI‐MS/MS method was developed for simultaneous determination of 10 flavonoids – scutellarin, scutellarein, chrysin, wogonin, baicalein, apigenin, wogonoside, oroxylin A‐7‐O‐glucuronide, oroxylin A and baicalin – from RS aqueous extracts in rat plasma with propyl paraben as internal standard (IS). Chromatographic separation was achieved on a C18 column using gradient elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection was performed in multiple reaction monitoring mode using electrospray ionization in negative mode. The validated method showed good linearity over a wide concentration range (r >0.9935). The intra‐ and interday assay variabilities were <9.5% and <12.4% for all analytes, respectively. The extraction recovery ranged from 71.2 to 89.7% for each analyte and IS. This method was successfully applied to pharmacokinetic comparision after oral administration of crude and wine‐processed RS aqueous extracts. There were significant differences in some pharmacokinetic parameters of most analytes between crude and wine‐processed RS. This suggested that wine‐processing exerted effects absorption of most flavonoids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra‐high liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC‐C18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid–liquid extraction with ethyl acetate. The UPLC‐MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra‐ and inter‐day precision were both <10.2%, and the accuracy ranged from −11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L.  相似文献   

3.
A rapid, sensitive and specific ultra‐high‐performance liquid chromatography coupled with tandem mass spectrometry (UPLC‐MS/MS) method was developed to investigate the pharmacokinetics and tissue distribution of Eclipta prostrata extract. Rats were orally administrated the 70% ethanol extract of E. prostrata, and their plasma as well as various organs were collected. The concentrations of seven main compounds, ecliptasaponin IV, ecliptasaponin A, apigenin, 3′‐hydroxybiochanin A, luteolin, luteolin‐7‐O‐glucoside and wedelolactone, were quantified by UPLC‐MS/MS through multiple reactions monitoring method. The precisions (RSD) of the analytes were all <15.00%. The extraction recoveries ranged from 74.65 to 107.45% with RSD ≤ 15.36%. The matrix effects ranged from 78.00 to 118.06% with RSD ≤ 15.04%. To conclude, the present pharmacokinetic and tissue distribution studies provided useful information for the clinical usage of Eclipta prostrata L.  相似文献   

4.
The purpose of this study was to develop an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1–1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra‐ and inter‐day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5–113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%.  相似文献   

5.
A sensitive and specific UPLC‐MS/MS method was developed and validated for the simultaneous determination of 2‐amino‐2‐(2‐(4′‐(2‐propyloxazol‐4‐yl)‐[1,1′‐biphenyl]‐4‐yl)ethyl)propane‐1,3‐diol (SYL930), phosphorylated metabolite (SYL930‐P) and hydroxylated metabolite (SYL930‐M) in dog blood using SYL927 and SYL927‐P, analogues of SYL930, as the internal standards. Analytes were extracted with protein precipitation followed by chromatographic separation on a ZorbaxSB‐C18 column (3.5 μm, 2.1 × 100 mm) with a gradient elution of methanol–water containing 0.1% formic acid (v /v). A triple quadrupole tandem mass spectrometer operating in the positive electrospray ionization mode was used to detect SYL930, SYL930‐P, SYL930‐M and IS transitions of 381.2 → 364.2, 461.2 → 334.2, 397.3 → 380.3, 367.1 → 350.4 and 447.5 → 320.2, respectively. The linear calibration curves for SYL930, SYL930‐P and SYL930‐M were 0.5–500, 0.2–100 and 0.5–100 ng/mL, respectively (r 2 > 0.99). The intra‐day and inter‐day precisions (RSD, %) of analytes did not exceed 9.16% except for low QCs (≤16.22%), and the accuracy (RE, %) ranged from −14 to 11.4%. The mean recoveries for SYL930, SYL930‐P and SYL930‐M in dog blood were 85.13–107.94, 73.84–80.08 and 85.64–95.44%, respectively. The validated method was successfully applied to pharmacokinetic and PK/PD studies of SYL930 and its two major metabolites in dogs after an oral administration of SYL930.  相似文献   

6.
A rapid, simple and sensitive, liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous determination of bergenin, chlorogenic acid and four flavonoids in a QingGanSanJie preparation in rat plasma. Puerarin was selected as the internal standard (IS). Plasma samples were precipitated with methanol and separated with a reverse phase Agilent Poroshell 120 EC‐C18 column using a gradient mobile phase of methanol–water containing 0.1% formic acid (v/v). A triple quadruple mass spectrometer was used for quantification (limit of detection 0.36–5.55 ng/mL). Intra‐day and inter‐day precisions were within 15% and the average extraction recoveries ranged from 85 to 115% for each analyte. The method allowed simultaneous quantification for the first time of the pharmacokinetics of bergenin, chlorogenic acid and four flavonoids after intragastric administration of a QingGanSanJie extract in Sprague–Dawley rats. It was found that bergenin and chlorogenic acid had typical extravascular administration concentration–time curves; flavonoids had a bimodal distribution improving bioavailability and extending the pharmacodynamics period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Cigarette smoke is known to interact with tamoxifen‐metabolizing enzymes and transporters and potentially affect its treatment outcome. 4‐(N‐ nitrosomethylamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL) is an important metabolite of 4‐(methylnitro‐samino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) because it is frequently used as a biomarker to assess human smoke exposure. In order to study the potential pharmacokinetic interaction between cigarette smoke and tamoxifen in rats a UPLC‐MS/MS method for the simultaneous determination of NNAL and tamoxifen along with its metabolites in rat plasma has been developed and validated. Analytes were extracted with methanol and separated on a HSS T3 column by a gradient elution with the mobile phase consisting of acetonitrile and water. The lower limits of quantitation ranged from 0.05 to 0.62 ng/mL. Precisions showed RSD <15.8% and accuracy in the range 80.6–116.0%. Mean analyte recoveries ranged from 76.9 to 108.4%. The method was successfully applied to study the effects of cigarette smoke condensate (CSC), NNK and benzo(a)pyrene pre‐treatment on the pharmacokinetics of tamoxifen and its metabolites in rats. Significant effects of CSC, NNK, benzo(a)pyrene were observed on pharmacokinetics of tamoxifen and its metabolites. We also found that plasma NNAL levels are statistically significant correlated with plasma 4‐hydroxy‐tamoxifen and endoxifen.  相似文献   

8.
In this work, a sensitive and selective UPLC‐MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile–methanol (9:1, v /v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m /z 1083.5 → 407.1 for ardisiacrispin A and m /z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5–2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra‐ and inter‐day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.  相似文献   

9.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, a sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method for determination of hupehenine in rat plasma was developed and validated. After addition of imperialine as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 416.3 → 98.0 for hupehenine, and m/z 430.3 → 138.2 for IS. Calibration plots were linear throughout the range 2–2000 ng/mL for hupehenine in rat plasma. Mean recoveries of hupehenine in rat plasma ranged from 92.5 to 97.3%. Relative standard deviations of intra‐day and inter‐day precision were both <6%. The accuracy of the method was between 92.7 and 107.4%. The method was successfully applied to a pharmacokinetic study of hupehenine after either oral or intravenous administration. For the first time, the bioavailability of hupehenine was reported as 13.4%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A selective and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous quantitative determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and 1‐O‐ acetylbritannilactone (1‐O‐ ABL) in rat plasma. Chromatographic separation was performed on a Zorbax Eclipse XDB‐C18 column using isocratic mobile phase consisting of methanol–water–formic acid (70:30:0.1, v /v/v) at a flow rate of 0.25 mL/min. The detection was achieved using a triple‐quadrupole tandem MS in selected reaction monitoring mode. The calibration curves of all analytes in plasma showed good linearity over the concentration ranges of 0.850–213 ng/mL for 1,5‐DCQA, and 0.520–130 ng/mL for 1‐O‐ ABL, respectively. The extraction recoveries were ≥78.5%, and the matrix effect ranged from 91.4 to 102.7% in all the plasma samples. The method was successfully applied for the pharmacokinetic study of the two active components in the collected plasma following oral administration of Inula britannica extract in rats.  相似文献   

14.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

15.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Gelsenicine is an indole alkaloid isolated from Gelsemium elegans Benth. In recent years, the role of G. elegans Benth preparations in anti‐tumor, analgesic, dilatation and dermatological treatment has attracted attention, and it has been applied clinically, but it is easy to cause poisoning with its use. An UPLC–MS/MS method was established to determine the gelsenicine in mouse blood, and the pharmacokinetics of gelsenicine after intravenous (0.1 mg/kg) and intragastric (0.5 and 1 mg/kg) administration was studied. Deltalin was used as internal standard; a UPLC BEH C18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 10 mmol/L ammonium acetate (0.1% formic acid) with a gradient elution flow rate of 0.4 mL/min. Multiple reaction monitoring mode was used for quantitative analysis of gelsenicine in electrospray ionization positive interface. Proteins from mouse blood were removed by acetonitrile precipitation. A validation of this method was performed in accordance with the US Food and Drug Administration guidelines. In the concentration range of 0.05–100 ng/mL, the gelsenicine in the mouse blood was linear (r > 0.995), and the lower limit of quantification was 0.05 ng/mL. In the mouse blood, the intra‐day precision RSD was <12%, the inter‐day precision RSD was <15%, the accuracy ranged from 89.8 to 112.3%, the average recovery was >76.8%, and the matrix effect was between 103.7 and 108.4%, which meet the pharmacokinetic research requirements of gelsenicine. The UPLC–MS/MS method is sensitive, rapid and selective, and has been successfully applied to the pharmacokinetic study of gelsenicine in mice. The absolute bioavailability of gelsenicine is 1.13%.  相似文献   

17.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
LS‐177 is a novel small‐molecule kinase inhibitor employed to interrupt the c‐Met signaling pathway. A rapid and sensitive ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for determination of LS‐177 in rat plasma and tissues. The biosamples were extracted by liquid–liquid extraction with methyl tert‐butyl ether and separated on a C18 column (50 × 4.6 mm, 2.6 µm) using a gradient elution mobile phase consisting of acetonitrile–0.1% formic acid water. Under the optimal conditions, the selectivity of the method was satisfactory with no endogenous interference. The intraday and interday precisions (relative standard deviation) were <10.5% and the accuracy (relative error) was from ?12.5 to 12.5% at all quality control levels. Excellent recovery and negligible matrix effects were observed. Stability studies showed that LS‐177 was stable during the preparation and analytical processes. The UPLC‐MS/MS method was successfully applied to pharmacokinetic and tissue distribution studies. The results indicated that there was no significant drug accumulation after multiple‐dose oral administration of LS‐177. The tissue distribution study exhibited significant higher uptakes of LS‐177 in stomach, intestine, lung and liver among all of the tissues. The results in pharmacokinetics and tissue distribution may provide a meaningful basis for clinical application. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, specific and sensitive ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was established and validated for simultaneous determination of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and geniposide in rat plasma using puerarin as an internal standard (IS). Plasma samples were pretreated by a one‐step direct protein precipitation procedure with acetonitrile after acidified using as little as 50 μL plasma. Chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm) at a flow rate of 0.2 mL/min by a gradient elution, using 0.2% acetic acid–methanol as mobile phase. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via electrospray ionization source with negative ion mode. Calibration curves showed good linearity (r > 0.995) over wide concentration ranges. The intra‐ and inter‐day precisions were <15%, and the accuracy was within ±8.0%. The validated method was successfully applied to a pharmacokinetic study of the four bioactive components in rats after intravenous administration of Reduning injection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号