首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Although IFN-gamma is the archetypal Th1 cytokine, its role in CTL maturation is uncertain. We used an in vivo mouse model of CTL development, parent-into-F(1) acute graft-vs-host disease (AGVHD), to evaluate this issue. In AGVHD, transfer of naive parental T cells into F(1) hosts stimulates the development of allospecific CTL effectors that eliminate host lymphocytes, particularly B cells. Complete elimination of IFN-gamma, using IFN-gamma-deficient donors and administering anti-IFN-gamma mAb, suppressed B cell elimination, down-regulated TNF-alpha production, and enhanced Th2 cytokine production, but did not allow the B cell expansion characteristic of chronic GVHD (CGVHD). Because complete CTL inhibition results in full-blown CGVHD that is IFN-gamma independent, these observations indicate that IFN-gamma elimination only partially blocks CTL development. IFN-gamma elimination did not inhibit donor T cell engraftment or activation in the AGVHD model, but almost completely blocked Fas/Fas ligand (FasL) gene expression, protein up-regulation, and Fas/FasL-mediated CTL killing. In contrast, IFN-gamma elimination only partially inhibited perforin gene expression and perforin-mediated CTL activity. The contributions of IFN-gamma to CTL development were indirect, because IFN-gamma receptor-deficient donor cells differentiated normally into allospecific CTLs. Consistent with the view that the Fas/FasL and perforin pathways each mediate CTL killing in AGVHD, the absence of both perforin and IFN-gamma (perforin knockout donor cells and anti-IFN-gamma mAb) converted AGVHD to CGVHD. Thus, both IFN-gamma-dependent induction of Fas/FasL and IFN-gamma-independent induction of perforin contribute to CTL-mediated elimination of host B cells in AGVHD. Suppression of both pathways is required for typical CGVHD development.  相似文献   

2.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

3.
To address whether a functional dichotomy exists between CD80 and CD86 in naive T cell activation in vivo, we administered anti-CD80 or CD86 blocking mAb alone or in combination to mice with parent-into-F(1) graft-vs-host disease (GVHD). In this model, the injection of naive parental T cells into unirradiated F(1) mice results in either a Th1 cytokine-driven, cell-mediated immune response (acute GVHD) or a Th2 cytokine-driven, Ab-mediated response (chronic GVHD) in the same F(1) recipient. Combined CD80/CD86 blockade beginning at the time of donor cell transfer mimicked previous results seen with CTLA4Ig and completely abrogated either acute or chronic GVHD by preventing the activation and maturation of donor CD4(+) T cells as measured by a block in acquisition of memory marker phenotype and cytokine production. Similar results were seen with selective CD86 blockade; however, the degree of CD4 inhibition was always less than that seen with combined CD80/CD86 blockade. A more striking effect was seen with selective CD80 blockade in that chronic GVHD was converted to acute GVHD. This effect was associated with the induction of Th1 cytokine production, donor CD8(+) T cell activation, and development of antihost CTL. The similarity of this effect to that reported for selective CTLA4 blockade suggests that CD80 is a critical ligand for CTLA4 in mediating the down-regulation of Th1 responses and CD8(+) T cell activation. In contrast, CD86 is critical for the activation of naive CD4(+) T cells in either a Th1 or a Th2 cytokine-mediated response.  相似文献   

4.
We have recently demonstrated that two IFN-gamma-inducing cytokines, interleukin (IL)-12 and IL-18, synergistically induced the fungicidal activity of mouse peritoneal exudate cells (PEC) against Cryptococcus neoformans through NK cell production of interferon (IFN)-gamma and nitric oxide (NO) synthesis. In the present study, we further dissected these effects by examining the involvement of tumor necrosis factor (TNF)-alpha in the induction of IL-12/IL-18-stimulated PEC fungicidal activity. The addition of neutralizing anti-TNF-alpha mAb significantly suppressed IL-12/IL-18-stimulated PEC anticryptococcal activity. This effect was ascribed to the inhibition of macrophage NO synthesis, but not of IFN-gamma production by NK cells, because the same treatment inhibited the former response, but not the latter one. On the other hand, combined treatment with IL-12 and IL-18 synergistically induced the production of TNF-alpha by PEC and this effect was almost completely abrogated by neutralizing anti-IFN-gamma mAb. The cell type producing TNF-alpha among PEC was mostly macrophage. TNF-alpha significantly promoted macrophage NO production and anticryptococcal activity induced by IFN-gamma, and furthermore anti-TNF-alpha mAb partially inhibited these responses. Considered together, our results indicated that TNF-alpha contributed to the potentiation of IL-12/IL-18-induced PEC fungicidal activity against C. neoformans through enhancement of IFN-gamma-induced production of NO by macrophages, but not through increased production of IFN-gamma by NK cells.  相似文献   

5.
We investigated the effect of CD137 costimulatory blockade in the development of murine acute and chronic graft-vs-host diseases (GVHD). The administration of anti-CD137 ligand (anti-CD137L) mAb at the time of GVHD induction ameliorated the lethality of acute GVHD, but enhanced IgE and anti-dsDNA IgG autoantibody production in chronic GVHD. The anti-CD137L mAb treatment efficiently inhibited donor CD8(+) T cell expansion and IFN-gamma expression by CD8(+) T cells in both GVHD models and CD8(+) T cell-mediated cytotoxicity against host-alloantigen in acute GVHD. However, a clear inhibition of donor CD4(+) T cell expansion and activation has not been observed. On the contrary, in chronic GVHD, the number of CD4(+) T cells producing IL-4 was enhanced by anti-CD137L mAb treatment. This suggests that the reduction of CD8(+) T cells producing IFN-gamma promotes Th2 cell differentiation and may result in exacerbation of chronic GVHD. Our results highlight the effective inactivation of CD8(+) T cells and the lesser effect on CD4(+) T cell inactivation by CD137 blockade. Intervention of the CD137 costimulatory pathway may be beneficial for some selected diseases in which CD8(+) T cells are major effector or pathogenic cells. Otherwise, a combinatorial approach will be required for intervention of CD4(+) T cell function.  相似文献   

6.
A major goal of the transplant field is to selectively tolerize only those donor T cells recognizing host alloantigen and mediating graft-vs-host disease (GVHD). Recently, we described an ex vivo approach in which the blockade of the CD40 ligand (CD40L):CD40 costimulatory pathway in bulk MLR cultures induces donor CD4+ T cells to become specifically tolerant to MHC class II-disparate alloantigenic-bearing stimulators, resulting in a profound reduction in GVHD generation in vivo. In studies presented in this work, we investigated the ex vivo requirements for tolerance induction. We found that CD4+ T cells become profoundly more hyporesponsive to alloantigen restimulation with prolonged culture duration such that 7 to 10 but not 4 days is needed to achieve maximum alloantigen hyporesponsiveness as assessed in secondary MLR cultures and GVHD generation. By day 7, both primed and tolerized cells had substantially increased blastogenesis and CD25 expression. Primed but not tolerized cells substantially down-regulated L-selectin expression, indicating that the tolerized cells do not become fully Ag experienced. Both Th1 and Th2 cytokine production is severely impaired by CD40L:CD40 blockade. Analysis of culture supernatants and results from IL-4 and IL-10 knockout mice indicated that GVHD prevention was not mediated by a skewing toward a Th2 phenotype. The addition of IL-4 to the cultures as a survival factor precluded the induction of tolerance in the anti-CD40L-cultured cells. These data provide further impetus for the ex vivo use of anti-CD40L mAb to block GVHD generation.  相似文献   

7.
CD40/CD40L signaling promotes both B cell and CTL responses in vivo, the latter being beneficial in tumor models. Because CTL may also limit autoreactive B cell expansion in lupus, we asked whether an agonist CD40 mAb would exacerbate lupus due to B cell stimulation or would improve lupus due to CTL promotion. These studies used an induced model of lupus, the parent-into-F1 model in which transfer of DBA/2 splenocytes into B6D2F1 mice induces chronic lupus-like graft-vs-host disease (GVHD). Although agonist CD40 mAb treatment of DBA-->F1 mice initially exacerbated B cell expansion, it also strongly promoted donor CD8 T cell engraftment and cytolytic activity such that by 10 days host B cells were eliminated consistent with an accelerated acute GVHD. CD40 stimulation bypassed the requirement for CD4 T cell help for CD8 CTL possibly by licensing dendritic cells (DC) as shown by the following: 1) greater initial activation of donor CD8 T cells, but not CD4 T cells; 2) earlier activation of host DC; 3) host DC expansion that was CD8 dependent and CD4 independent; and 4) induction of acute GVHD using CD4-depleted purified DBA CD8+ T cells. A single dose of CD40 mAb improved lupus-like renal disease at 12 wk, but may not suffice for longer periods consistent with a need for continuing CD8 CTL surveillance. These results demonstrate that in the setting of lupus-like CD4 T cell-driven B cell hyperactivity, CTL promotion is both feasible and beneficial and the CTL-promoting properties of CD40 stimulation outweigh the B cell-stimulatory properties.  相似文献   

8.
9.
10.
IL-18 expression and functional activity have been associated with a range of autoimmune diseases. However, the precise mechanism by which IL-18 induces such pathology remains unclear. In this study we provide direct evidence that IL-18 activates neutrophils via TNF-alpha induction, which drives the production of leukotriene B(4) (LTB(4)), which in turn leads to neutrophil accumulation and subsequent local inflammation. rIL-18 administered i.p. resulted in the local synthesis of LTB(4) and a rapid influx of neutrophils into the peritoneal cavity, which could be effectively blocked by the LTB(4) synthesis inhibitor MK-886 (MK) or its receptor antagonist CP-105,696. IL-18-induced neutrophils recruitment and LTB(4) production could also be blocked by a neutralizing anti-TNF-alpha Ab. In addition, IL-18 failed to induce neutrophil accumulation in vivo in TNFRp55(-/-) mice. In an IL-18-dependent murine collagen-induced arthritis model, administration of MK significantly inhibited disease severity and reduced articular inflammation and joint destruction. Furthermore, MK-886-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Finally, we showed that IL-18-activated human peripheral blood neutrophils produced significant amounts of LTB(4) that were effectively blocked by the MK. Together, these findings provide a novel mechanism whereby IL-18 can promote inflammatory diseases.  相似文献   

11.
In both humans and mice, treatment with TNF-alpha antagonists is associated with serious infectious complications including disseminated histoplasmosis. The mechanisms by which inhibition of endogenous TNF-alpha alter protective immunity remain obscure. Herein, we tested the possibility that neutralization of this cytokine triggered the emergence of T cells that dampen immunity. The lungs of mice given mAb to TNF-alpha contained a higher proportion and number of CD4+CD25+ cells than controls. This elevation was not observed in IFN-gamma- or GM-CSF-deficient mice or in those given a high inoculum. Phenotypic analysis revealed that these cells lacked many of the characteristics of natural regulatory T cells, including Foxp3. CD4+CD25+ cells from TNF-alpha-neutralized mice suppressed Ag-specific, but not nonspecific, responses in vitro. Elimination of CD25+ cells in vivo restored protective immunity in mice given mAb to TNF-alpha and adoptive transfer of CD4+CD25+ cells inhibited immunity. In vitro and in vivo, the suppressive effect was reversed by mAb to IL-10. Thus, neutralization of TNF-alpha is associated with the induction of a population of regulatory T cells that alter protective immunity in an Ag-specific manner to Histoplasma capsulatum.  相似文献   

12.
Interaction of OX40 (CD134) on T cells with its ligand (OX40L) on antigen-presenting cells has been implicated in pathogenic T cell activation. This study was performed to explore the involvement of OX40/OX40L in the development of T cell-mediated chronic colitis. We evaluated both the preventive and therapeutic effects of neutralizing anti-OX40L MAb on the development of chronic colitis in SCID mice induced by adoptive transfer of CD4(+)CD45RB(high) T cells as an animal model of Crohn's disease. We also assessed the combination of anti-OX40L and anti-TNF-alpha MAbs to improve the therapeutic effect. Administration of anti-OX40L MAb markedly ameliorated the clinical and histopathological disease in preventive and therapeutic protocols. In vivo treatment with anti-OX40L MAb decreased CD4(+) T cell infiltration in the colon and suppressed IFN-gamma, IL-2, and TNF-alpha production by lamina propria CD4(+) T cells. The combination with anti-TNF-alpha MAb further improved the therapeutic effect by abolishing IFN-gamma, IL-2, and TNF-alpha production by lamina propria CD4(+) T cells. Our present results suggested a pivotal role of OX40/OX40L in the pathogenesis of T cell-mediated chronic colitis. The OX40L blockade, especially in combination with the TNF-alpha blockade, may be a promising strategy for therapeutic intervention of Crohn's disease.  相似文献   

13.
Despite increasing use of swine in transplantation research, the ability to block costimulation of allogeneic T cell responses has not been demonstrated in swine, and the effects of costimulatory blockade on xenogeneic human anti-porcine T cell responses are also not clear. We have compared the in vitro effects of anti-human CD154 mAb and human CTLA4IgG4 on allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses. Both anti-CD154 mAb and CTLA4IgG4 cross-reacted on pig cells. While anti-CD154 mAb and CTLA4IgG4 both inhibited the primary allogeneic pig MLRs, CTLA4IgG4 (7.88 microg/ml) was considerably more inhibitory than anti-CD154 mAb (100 microg/ml) at optimal doses. Anti-CD154 mAb inhibited the production of IFN-gamma by 75%, but did not inhibit IL-10 production, while CTLA4IgG4 completely inhibited the production of both IFN-gamma and IL-10. In secondary allogeneic pig MLRs, CTLA4IgG4, but not anti-CD154 mAb, induced Ag-specific T cell anergy. CTLAIgG4 completely blocked the indirect pathway of allorecognition, while anti-CD154 mAb blocked the indirect response by approximately 50%. The generation of porcine CTLs was inhibited by CTLA4IgG4, but not by anti-CD154 mAb. Human anti-porcine xenogeneic MLRs were blocked by CTLA4IgG4, but only minimally by anti-CD154 mAb. Finally, CTLA4IgG4 prevented secondary xenogeneic human anti-porcine T cell responses. These data indicate that blockade of the B7-CD28 pathway was more effective than blockade of the CD40-CD154 pathway in inhibiting allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses in vitro. These findings have implications for inhibiting cell-mediated immune responses in pig-to-human xenotransplantation.  相似文献   

14.
IL-6 and TNF-alpha are synthesized and secreted by normal tonsillar B cells after stimulation with the polyclonal B cell activator Staphylococcus aureus Cowan strain 1 (SAC) and IL-2 as well as spontaneously by in vivo activated B cells from patients with hypergammaglobulinemia. Using specific neutralizing antibodies, both factors were shown to be involved in autocrine and/or paracrine regulation of B cell differentiation. IgG induced by SAC/IL-2 stimulation was reduced 73% with an anti-IL-6 antibody and 40% with an anti-TNF-alpha antibody. Similar effects of these antibodies were observed on the spontaneous in vitro IgG production by lymphoblastic B cells from six patients with hypergammaglobulinemia. Kinetic studies with SAC/IL-2-activated B cells revealed that the anti-TNF-alpha antibody must be present at the beginning of the culture to exert an effect on Ig production, whereas the anti-IL-6 antibody reduced Ig production even if added as late as day 3. This sequential action of TNF-alpha and IL-6 on B cell differentiation was reflected by different kinetics of release of these two cytokines into the supernatant of SAC/IL-2 activated B cells; TNF-alpha peaked at 24 h and IL-6 at 96 h after stimulation. In addition, it was shown that IL-6 production by in vitro-activated B cells was partially blocked by an anti-TNF-alpha antibody suggesting that TNF-alpha regulates IL-6 production in normal B cells via an autocrine pathway. We also investigated the effects of TGF-beta on TNF-alpha and IL-6 production by normal B cells. Although TGF-beta inhibited Ig production by in vitro-activated and in vivo-activated B cells, it did not inhibit the release of these cytokines from normal B cells. Furthermore, TGF-beta did not inhibit the induction of nuclear factor-IL-6 nor the expression of IL-6R on activated B cells. Thus, although the biologic effects of anti-IL-6 and TGF-beta on B cell Ig production are similar, their mechanisms of actions appear to be distinct.  相似文献   

15.
Dysfunctional leukocyte-endothelial interactions are thought to play a key role in systemic lupus erythematosus pathogenesis. We questioned the importance of TNF-alpha and IL-1 for endothelial activation in MRL/lpr lupus-prone mice. Endothelial ICAM-1 and VCAM-1 expression increased significantly with disease evolution in kidney, heart, and brain, as shown by i.v. injected radiolabeled Ab uptake. Lung endothelial VCAM-1 also increased, while lung endothelial ICAM-1 did not rise above a high basal level. Immunoassays showed a significantly raised circulating level of TNF-alpha by 14 wk, with levels of circulating IL-1alpha and IL-1beta being additionally raised by 20 wk. With 14-wk-old MRL/lpr, anti-TNF-alpha antiserum inhibited expression of ICAM-1 and VCAM-1 by endothelial cells cultured with sera in vitro, and uptake of anti-ICAM-1 and anti-VCAM-1 mAb in lung, kidney, brain, and heart in vivo. In contrast, both anti-TNF-alpha and anti-IL-1 antisera were required for maximal inhibition in vitro and in vivo at 20 wk. These data indicate that TNF-alpha is largely responsible for the early up-regulation of endothelial ICAM-1 and VCAM-1, but that IL-1 enhances expression in late disease. Our observations provide novel insights of possible relevance to understanding endothelial activation in systemic lupus erythematosus, and highlight an approach that can be extended to dissecting other chronic inflammatory diseases.  相似文献   

16.
The role of physiologically secreted human IFN-gamma in T lymphocyte and NK cell activation has been probed with a panel of mouse mAb directed against various epitopes of the human IFN-gamma molecule, or human IFN-gamma R. Addition to the culture medium of those mAb that neutralize the antiviral activity of IFN-gamma or interact with its receptor inhibited proliferative and cytotoxic responses elicited in PBL by HLA alloantigens, anti-CD3 mAb, and IL-2, but not the proliferative response to PHA. The IFN-gamma blockade also inhibited IFN-gamma, IL-2, and TNF-alpha release during MLC. Kinetic experiments showed that reduction of proliferative and cytotoxic responses to HLA alloantigens is maximal when IFN-gamma is blocked within the first 48 h. Exogenous rIFN-gamma restored the proliferative response only when added at the beginning. Moreover, when IFN-gamma was blocked, T lymphocytes recovered from 6-day MLC displayed a profound decrease in their expression of p55 and p75 chains of the IL-2R, as well as in the number of high-affinity IL-2 binding sites. These findings strongly suggest that IFN-gamma is required in the early phases of induction of the oligo- and polyclonal proliferative and cytotoxic responses of lymphocytes.  相似文献   

17.
Induction of graft-vs-host disease (GVHD) in the parent-into-F1 model is dependent on the presence of T cells in the donor inoculum. Although in vivo activation of donor T cells in response to F1 alloantigens is thought to be critical to GVHD induction, direct evidence of activated donor T cells has been lacking in this model. In the present study, spleen cells from acute or chronic GVHD mice were studied for evidence of T cell activation at multiple intervals early after GVHD induction. Spleen cells from both acute and chronic GVHD mice exhibited striking elevations in spontaneous proliferation and IL-2 production, which were maximal 24 to 48 h after GVHD induction. Persistent lower levels of spontaneous in vitro activity were observed for spleen cells from mice tested 7 to 9 days after GVHD induction. In both forms of GVHD, increased spontaneous proliferation and IL-2 production were dependent on the presence of donor CD4+ T cells. These results strongly support the presence of activated donor T cells in vivo. Furthermore, these data imply that despite the significant differences in outcome, acute and chronic GVHD share a common early event.  相似文献   

18.
We have evaluated the effects of anti-TNF-alpha, anti-IL-1, and combined anti-TNF-alpha/anti-CD4 therapy in collagen-induced arthritis. Blockade of TNF-alpha or IL-1 before disease onset delayed, but did not prevent, the induction of arthritis. When treatment was initiated after onset of arthritis, anti-TNF-alpha, anti-IL-1beta, and anti-IL-1R (which blocks IL-1alpha and IL-1beta) were all found to be effective in reducing the severity of arthritis, with anti-IL-1R and anti-IL-1beta showing greater efficacy than anti-TNF-alpha. Anti-IL-1beta was equally as effective as anti-IL-1R, indicating that IL-1beta plays a more prominent role than IL-1alpha in collagen-induced arthritis. An additive effect was observed between anti-TNF-alpha and anti-IL-1R in the prevention of joint erosion and in normalization of the levels of serum amyloid P. Combined anti-TNF-alpha/anti-CD4 therapy also caused normalization of serum amyloid P levels. The therapeutic effect of anti-TNF-alpha plus anti-CD4 was comparable to that of anti-TNF-alpha plus anti-IL-1R, suggesting that combined anti-TNF-alpha/anti-CD4 therapy prevents both TNF-alpha- and IL-1-mediated pathology. Anti-TNF-alpha treatment reduced IL-1beta expression in the joint and, conversely, anti-IL-1beta treatment reduced TNF-alpha expression. Combined anti-TNF-alpha/anti-CD4 treatment almost completely blocked the expression of IL-1beta, thereby confirming the ability of this form of combination therapy to prevent IL-1ss-mediated pathology.  相似文献   

19.
T cells play an essential role in driving humoral autoimmunity in lupus. Molecules such as TRAIL exhibit strong T cell modulatory effects and are up-regulated in lupus, raising the possibility that they may influence disease severity. To address this possibility, we examined the role of TRAIL expression on pathogenic T cells in an induced model of murine lupus, the parent-into-F(1) (P-->F(1)) model of chronic graft-vs-host disease (GVHD), using wild-type or TRAIL-deficient donor T cells. Results were compared with mice undergoing suppressive acute GVHD. Although chronic GVHD mice exhibited less donor T cell TRAIL up-regulation and IFN-alpha-inducible gene expression than acute GVHD mice, donor CD4(+) T cell TRAIL expression in chronic GVHD was essential for sustaining effector CD4(+) Th cell numbers, for sustaining help to B cells, and for more severe lupus-like renal disease development. Conversely, TRAIL expression on donor CD8(+) T cells had a milder, but significant down-regulatory effect on CTL effector function, affecting the perforin/granzyme pathway and not the Fas ligand pathway. These results indicate that, in this model, T cell-expressed TRAIL exacerbates lupus by the following: 1) positively regulating CD4(+) Th cell numbers, thereby sustaining T cell help for B cells, and 2) to a lesser degree by negatively regulating perforin-mediated CD8(+) CTL killing that could potentially eliminate activated autoreactive B cells.  相似文献   

20.
The production and roles of endogenous tumor necrosis factor alpha (TNF-alpha) and gamma interferon (IFN-gamma) in the infection of Corynebacterium (C.) pseudotuberculosis were investigated in mice. The maximum levels of TNF-alpha and IFN-gamma were detected on day 4 after infection. The administration of anti-TNF-alpha monoclonal antibody (mAb) as well as anti-IFN-gamma mAb increased bacterial proliferation in the organs, leading to the death of infected mice, but anti-IFN-gamma mAb showed a less marked effect than anti-TNF-alpha mAb. The suppressive effect of anti-TNF-alpha and anti-IFN-gamma mAbs on anticorynebacterial resistance was augmented by the simultaneous administration of these antibodies. Anti-TNF-alpha mAb was found to be highly effective when administered on day 0 and day 4, suggesting that TNF-alpha produced during the early stage of infection is critical for the generation of resistance. Histologically, many microabscesses, severe follicular swelling and lymphocyte destruction were observed in mice treated with anti-TNF-alpha or anti-IFN-gamma mAb. Injection of anti-CD4 or anti-CD8 mAb also resulted in significantly increased mortality and a marked suppression of IFN-gamma production, but had no effect on TNF-alpha production. Carrageenan also showed a marked effect on the exacerbation of infection. Taken together, these results suggest that endogenously produced TNF-alpha and IFN-gamma are both essential to the host defense against C. pseudotuberculosis infection and that these cytokines may have an additive effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号